Lp properties for Gaussian random series

被引:28
作者
Ayache, Antoine [1 ]
Tzvetkov, Nikolay [1 ]
机构
[1] Univ Lille 1, Lab Paul Painleve, F-59655 Villeneuve Dascq, France
关键词
eigenfunctions; Gaussian random series;
D O I
10.1090/S0002-9947-08-04456-5
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let c = (c(n))(n epsilon N*) be an arbitrary sequence of l(2)(N*) and let F-c(omega) be a random series of the type F-c(omega) = Sigma(gn)(n epsilon N*)(omega)c(n)e(n), where (g(n))(n epsilon N*) is a sequence of independent N-C(0, 1) Gaussian random variables and (e(n))(n epsilon N*) an orthonormal basis of L-2(Y, M, mu) (the finite measure space (Y, M, mu) being arbitrary). By using the equivalence of Gaussian moments and an integrability theorem due to Fernique, we show that a necessary and su. cient condition for F-c(omega) to belong to L-p(Y, M, mu), p epsilon [2, infinity) for any c epsilon l(2)(N*) almost surely is that sup(n epsilon N*) parallel to e(n)parallel to(Lp(Y, M, mu)) < infinity. One of the main motivations behind this result is the construction of a nontrivial Gibbs measure invariant under the flow of the cubic defocusing nonlinear Schrodinger equation posed on the open unit disc of R-2.
引用
收藏
页码:4425 / 4439
页数:15
相关论文
共 9 条
[1]  
[Anonymous], 1944, TREATISE THEORY BESS
[2]  
FERNIQUE X, 1974, ECOLE ETE ST FLOUR
[3]  
Schwartz L., 1961, METHODES MATH SCI PH
[5]   OSCILLATORY INTEGRALS AND SPHERICAL-HARMONICS [J].
SOGGE, CD .
DUKE MATHEMATICAL JOURNAL, 1986, 53 (01) :43-65
[6]  
SOGGE CD, 1993, FOURIER INTEGRALS CL
[7]  
STEIN E, 1977, INTRO FOURIER ANAL E
[8]  
Szego G., 1974, ORTHOGONAL POLYNOMIA, Vthird edn
[9]  
Tzvetkov N, 2006, DYNAM PART DIFFER EQ, V3, P111