Numerical solutions of nonlinear Burgers-Huxley equation through the Richtmyer type nonstandard finite difference scheme

被引:0
作者
Izadi, F. [1 ]
Najafi, H. Saberi [1 ]
Sheikhani, A. H. Refahi
机构
[1] Islamic Azad Univ, Fac Math Sci, Dept Appl Math, Lahijan Branch, Lahijan, Iran
来源
INTERNATIONAL JOURNAL OF NONLINEAR ANALYSIS AND APPLICATIONS | 2022年 / 13卷 / 01期
关键词
Burger-Huxley equation; Nonstandard finite difference scheme; Richtmyer's; (3; 1; 1) implicit formula; Consistency; Convergence; Stability; CONVERGENCE;
D O I
10.22075/ijnaa.2021.25004.2878
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The Burger-Huxley equation as a well-known nonlinear physical model is studied numerically in the present paper. In this respect, the nonstandard finite difference (NSFD) scheme in company with the Richtmyer's (3, 1, 1) implicit formula is formally adopted to accomplish this goal. Moreover, the stability, convergence, and consistency analyses of nonstandard finite difference schemes are investigated systematically. Several case studies with comparisons are provided, confirming that the current numerical scheme is capable of resulting in highly accurate approximations.
引用
收藏
页码:1507 / 1518
页数:12
相关论文
共 15 条
[1]  
[Anonymous], 2013, INT J CONT MATH SCI
[2]   Application of variational iteration method to the generalized Burgers-Huxley equation [J].
Batiha, B. ;
Noorani, M. S. M. ;
Hashim, I. .
CHAOS SOLITONS & FRACTALS, 2008, 36 (03) :660-663
[3]  
Biazar J, 2010, APPL APPL MATH, V5, P629
[4]  
Bratsos A. G., 2011, Am. J. Comput. Math., V1, P152, DOI DOI 10.4236/ajcm.2011.13017
[5]   Solving the generalized Burgers-Huxley equation using the Adomian decomposition method [J].
Hashim, I. ;
Noorani, M. S. M. ;
Al-Hadidi, M. R. Said .
MATHEMATICAL AND COMPUTER MODELLING, 2006, 43 (11-12) :1404-1411
[6]   STABILITY AND CONVERGENCE OF FINITE-DIFFERENCE METHODS FOR SYSTEMS OF NON-LINEAR REACTION-DIFFUSION EQUATIONS [J].
HOFF, D .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1978, 15 (06) :1161-1177
[7]  
Inan B, 2017, KUWAIT J SCI, V44, P20
[8]   A numerical solution of the generalized Burger's-Huxley equation by pseudospectral method and Darvishi's preconditioning [J].
Javidi, M .
APPLIED MATHEMATICS AND COMPUTATION, 2006, 175 (02) :1619-1628
[9]   A new domain decomposition algorithm for generalized Burger's-Huxley equation based on Chebyshev polynomials and preconditioning [J].
Javidi, M. ;
Golbabai, A. .
CHAOS SOLITONS & FRACTALS, 2009, 39 (02) :849-857
[10]  
Mitchell A.R., 1980, HAND BOOK FINITE DIF