Global Solutions to the 3-D Incompressible Anisotropic Navier-Stokes System in the Critical Spaces

被引:77
作者
Paicu, Marius [1 ]
Zhang, Ping [2 ,3 ]
机构
[1] Univ Bordeaux 1, Inst Math Bordeaux, F-33405 Talence, France
[2] Chinese Acad Sci, Acad Math & Syst Sci, Beijing 100190, Peoples R China
[3] Chinese Acad Sci, Hua Loo Keng Key Lab Math, Beijing 100190, Peoples R China
关键词
EQUATIONS; FLUIDS;
D O I
10.1007/s00220-011-1350-6
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this paper, we consider the global wellposedness of the 3-D incompressible anisotropic Navier-Stokes equations with initial data in the critical Besov-Sobolev type spaces B and B-4(-1/2, 1/2) (see Definitions 1.1 and 1.2 below). In particular, we proved that there exists a positive constant C such that (ANS(nu)) has a unique global solution with initial data u(0) = (u(0)(h), u(0)(3)) which satisfies parallel to u(0)(h)parallel to B exp(C/nu(4) parallel to u(0)(3)parallel to(4)(B)) <= c(0)nu or parallel to u(0)(h)parallel to(B4-1/2, 1/2) exp(C/nu(4)parallel to u(0)(3)parallel to(4)(B4-1/2, 1/2)) <= c(0)nu for some c(0) sufficiently small. To overcome the difficulty that Gronwall's inequality can not be applied in the framework of Chemin-Lerner type spaces, <(L-t(p))over tilde>(B), we introduced here sort of weighted Chemin-Lerner type spaces, <(L-t, f(2))over tilde>(B) for some apropriate L-1 function f(t).
引用
收藏
页码:713 / 759
页数:47
相关论文
共 27 条
[1]  
[Anonymous], 2002, CHAPMAN HALL CRC RES
[2]  
[Anonymous], 1979, GEOPHYS FLUID DYNAMI
[3]  
[Anonymous], 2006, OXFORD LECT SERIES M
[4]  
Bahouri H., 2011, GRUNDLEHREN MATH WIS, V343
[5]  
BONY JM, 1981, ANN SCI ECOLE NORM S, V14, P209
[6]  
Cannone M, 1997, REV MAT IBEROAM, V13, P515
[7]  
Cannone M., 1993, SEMINAIRE EQUATIONS
[8]  
Chemin J.-Y., 2004, CRM series, V1, P53
[9]   On the global wellposedness to the 3-D incompressible anisotropic Navier- Stokes equations [J].
Chemin, Jean-Yves ;
Zhang, Ping .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2007, 272 (02) :529-566
[10]   LARGE, GLOBAL SOLUTIONS TO THE NAVIER-STOKES EQUATIONS, SLOWLY VARYING IN ONE DIRECTION [J].
Chemin, Jean-Yves ;
Gallagher, Isabelle .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2010, 362 (06) :2859-2873