Backlund transformation for solutions of the modified Volterra lattice equation

被引:6
|
作者
Kajinaga, Y [1 ]
Wadati, M [1 ]
机构
[1] Univ Tokyo, Grad Sch Sci, Dept Phys, Bunkyo Ku, Tokyo 1130033, Japan
关键词
modified Volterra lattice equation; Backlund transformations; superposition formula; multi-soliton solutions; modified KdV equation;
D O I
10.1143/JPSJ.68.51
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We present new expressions to a pair of Backlund transformations for the modified Volterra lattice equation. We derive a superposition formula to generate multi-soliton solutions. In an appropriate continuum limit, the Backlund transformations coincide with those for the modified Korteweg-de Vries equation.
引用
收藏
页码:51 / 54
页数:4
相关论文
共 50 条
  • [31] A modified Backlund transformation and multi-soliton solution for the Boussinesq equation
    Zhang, Y
    Chen, DY
    CHAOS SOLITONS & FRACTALS, 2005, 23 (01) : 175 - 181
  • [32] BACKLUND TRANSFORMATION FOR EQUATION OF MOTION FOR NONLINEAR LATTICE UNDER WEAK DISLOCATION POTENTIAL
    KONNO, K
    SANUKI, H
    JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 1975, 39 (01) : 22 - 24
  • [33] The vector generalization of the Landau-Lifshitz equation: Backlund transformation and solutions
    Balakhnev, MJ
    APPLIED MATHEMATICS LETTERS, 2005, 18 (12) : 1363 - 1372
  • [34] NONLINEAR SCHRODINGER-EQUATION, PAINLEVE TEST, BACKLUND TRANSFORMATION AND SOLUTIONS
    STEEB, WH
    KLOKE, M
    SPIEKER, BM
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1984, 17 (15): : L825 - L829
  • [35] Soliton solutions and Backlund transformation for the complex Ginzburg-Landau equation
    Liu, Wen-Jun
    Tian, Bo
    Jiang, Yan
    Sun, Kun
    Wang, Pan
    Li, Min
    Qu, Qi-Xing
    APPLIED MATHEMATICS AND COMPUTATION, 2011, 217 (09) : 4369 - 4376
  • [36] Perturbed Gerdjikov–Ivanov equation: Soliton solutions via Backlund transformation
    Yasmin H.
    Alshehry A.S.
    Ganie A.H.
    Mahnashi A.M.
    Shah R.
    Optik, 2024, 298
  • [37] Nonlocal symmetries, Backlund transformation and interaction solutions for the integrable Boussinesq equation
    Pu, Jun Cai
    Chen, Yong
    MODERN PHYSICS LETTERS B, 2020, 34 (26):
  • [38] New Backlund transformation and exact solutions for variable coefficient KdV equation
    Yan, ZY
    Zhang, HQ
    ACTA PHYSICA SINICA-OVERSEAS EDITION, 1999, 8 (12): : 889 - 894
  • [39] GENERAL-SOLUTIONS TO THE BACKLUND TRANSFORMATION OF HIROTA BILINEAR DIFFERENCE EQUATION
    SAITOH, N
    SAITO, S
    JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 1987, 56 (05) : 1664 - 1674
  • [40] ON THE BACKLUND TRANSFORMATION OF THE SEMISIMPLE TODA LATTICE
    ZENG, YB
    CHINESE SCIENCE BULLETIN, 1989, 34 (16): : 1403 - 1404