The thermoelectrochemistry of lithium-glyme solvate ionic liquids: towards waste heat harvesting

被引:31
作者
Black, Jeffrey J. [1 ]
Murphy, Thomas [2 ]
Atkin, Rob [2 ]
Dolana, Andrew [1 ]
Aldous, Leigh [1 ]
机构
[1] UNSW Australia, Sch Chem, Sydney, NSW 2052, Australia
[2] Univ Newcastle, Newcastle Inst Energy & Resources, Prior Res Ctr Adv Fluids & Interfaces, Callaghan, NSW 2308, Australia
基金
澳大利亚研究理事会;
关键词
THERMOGALVANIC CELLS; CONVERSION EFFICIENCY; POWER-GENERATION; CARBON-NANOTUBE; REDOX COUPLES; ELECTROLYTES; BATTERIES; THERMOELECTRICS; CONDUCTIVITY; STABILITY;
D O I
10.1039/c6cp02255c
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Thermoelectrochemistry offers a simple, scalable technique for direct conversion of waste heat into useful electricity. Here the thermoelectrochemical properties of lithium-glyme solvate ionic liquids, as well as their dilute electrolyte analogues, have been investigated using mixtures of tetraglyme (G4, tetraethylene glycol dimethyl ether) and lithium bis(trifluoromethylsulfonyl) imide (Li[NTf2]). The thermoelectrochemical process is entropically-driven by release of the glyme from the lithium-glyme complex cation, due to electrodeposition of lithium metal at the hotter lithium electrode with concomitant electrodissolution at the cooler lithium electrode. The optimum ratio for thermochemical electricity generation is not the solvate ionic liquid (equimolar mixture of Li[NTf2] and glyme), but rather one Li[NTf2] to four G4, due to the mixtures relatively high ionic conductivity and good apparent Seebeck coefficient (+1.4 mV K-1). Determination of the lithium-glyme mixture thermal conductivity enabled full assessment of the Figure of Merit (ZT), and the efficiency relative to the Carnot efficiency to be determined. As the lithium electrodeposits are porous, alternating the temperature gradient results in a system that actually improves with repeated use.
引用
收藏
页码:20768 / 20777
页数:10
相关论文
共 56 条
[1]  
Abraham T. J., 2013, MRS P, V1575
[2]   High Seebeck coefficient redox ionic liquid electrolytes for thermal energy harvesting [J].
Abraham, Theodore J. ;
MacFarlane, Douglas R. ;
Pringle, Jennifer M. .
ENERGY & ENVIRONMENTAL SCIENCE, 2013, 6 (09) :2639-2645
[3]   Seebeck coefficients in ionic liquids -prospects for thermo-electrochemical cells [J].
Abraham, Theodore J. ;
MacFarlane, Douglas R. ;
Pringle, Jennifer M. .
CHEMICAL COMMUNICATIONS, 2011, 47 (22) :6260-6262
[4]  
Almaimani M., 2016, ELECTROCHEM CO UNPUB
[5]   Combining thermogalvanic corrosion and thermogalvanic redox couples for improved electrochemical waste heat harvesting [J].
Alzahrani, Hassan A. H. ;
Black, Jeffrey J. ;
Goonetilleke, Damian ;
Panchompoo, Janjira ;
Aldous, Leigh .
ELECTROCHEMISTRY COMMUNICATIONS, 2015, 58 :76-79
[6]   Substituted ferrocenes and iodine as synergistic thermoelectrochemical heat harvesting redox couples in ionic liquids [J].
Anari, E. H. B. ;
Romano, M. ;
Teh, W. X. ;
Black, J. J. ;
Jiang, E. ;
Chen, J. ;
To, T. Q. ;
Panchompoo, J. ;
Aldous, L. .
CHEMICAL COMMUNICATIONS, 2016, 52 (04) :745-748
[7]   Thermobattery based on CNT Coated Carbon Textile and Thermoelectric Electrolyte [J].
Bae, Kyoung Min ;
Yang, Hee Doo ;
Tufa, Lemma Teshome ;
Kang, Tae June .
INTERNATIONAL JOURNAL OF PRECISION ENGINEERING AND MANUFACTURING, 2015, 16 (07) :1245-1250
[8]   A critical review on lithium-air battery electrolytes [J].
Balaish, Moran ;
Kraytsberg, Alexander ;
Ein-Eli, Yair .
PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2014, 16 (07) :2801-2822
[9]   Huge Seebeck coefficients in nonaqueous electrolytes [J].
Bonetti, M. ;
Nakamae, S. ;
Roger, M. ;
Guenoun, P. .
JOURNAL OF CHEMICAL PHYSICS, 2011, 134 (11)
[10]  
Carslaw HS., 1986, CONDUCTION HEAT SOLI