Modified preparation of Al2O3@Al microencapsulated phase change material with high durability for high-temperature thermal energy storage over 650 °C

被引:23
作者
Kawaguchi, Takahiro [1 ]
Yoolerd, Julalak [1 ]
Sakai, Hiroki [1 ]
Shimizu, Yuto [1 ]
Kurniawan, Ade [2 ]
Nomura, Takahiro [2 ]
机构
[1] Hokkaido Univ, Grad Sch Engn, Kita Ku, Kita 13 Nishi 8, Sapporo, Hokkaido 0608628, Japan
[2] Hokkaido Univ, Fac Engn, Kita Ku, Kita 13 Nishi 8, Sapporo, Hokkaido 0608628, Japan
关键词
Thermal energy storage; Latent heat storage; Phase change material; Microencapsulation; Renewable energy; Precipitation; HEAT-STORAGE; MICROCAPSULE; PERFORMANCE; SYSTEMS;
D O I
10.1016/j.solmat.2021.111540
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Latent heat storage using phase change materials (PCMs) with high melting points above 600 degrees C can mitigate the fluctuation in renewable energy supply and recover energy from industrial waste heat. Microencapsulated PCMs (MEPCMs) expand the possibilities of heat utilization owing to the presence of a thermally and chemically stable coating on the PCMs. This study improves the durability of an Al-based MEPCM (melting point: 660 degrees C) with an Al2O3 coating. The conventional process for preparing Al-based MEPCMs, which involves a boehmite treatment in boiling water and a heat-oxidation treatment at high temperature, was modified by adding Al(OH)(3) before the boehmite treatment to precipitate Al(OH)(3) on the surfaces of the Al particles after the boehmite treatment. The precipitation treatment increased the thickness of the oxide coating, thereby enabling the proposed Al-based MEPCM to withstand 300 melting and solidification cycles. In addition, the Al-based MEPCM reported an excellent heat storage capacity of 186 J g(-1). This Al-based MEPCM with excellent durability and high heat storage capacity may be further developed for use in future thermal energy storage and management systems.
引用
收藏
页数:8
相关论文
共 32 条
[1]  
[Anonymous], 2008, THERMOPHYSICAL PROPE
[2]   Thermophysical characterization of Mg-51%Zn eutectic metal alloy: A phase change material for thermal energy storage in direct steam generation applications [J].
Blanco-Rodriguez, P. ;
Rodriguez-Aseguinolaza, J. ;
Risueno, E. ;
Tello, M. .
ENERGY, 2014, 72 :414-420
[3]   Optimization of thermal performance in thermocline tank thermal energy storage system with the multilayered PCM(s) for CSP tower plants [J].
Elfeky, K. E. ;
Li, Xinyi ;
Ahmed, N. ;
Lu, Lin ;
Wang, Qiuwang .
APPLIED ENERGY, 2019, 243 :175-190
[4]   Considerations for the use of metal alloys as phase change materials for high temperature applications [J].
Fernandez, A. Ines ;
Barreneche, Camila ;
Belusko, Martin ;
Segarra, Merce ;
Bruno, Frank ;
Cabeza, Luisa F. .
SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2017, 171 :275-281
[5]   Mainstreaming commercial CSP systems: A technology review [J].
Fernandez, Angel G. ;
Gomez-Vidal, Judith ;
Oro, Eduard ;
Kruizenga, Alan ;
Sole, Aran ;
Cabeza, Luisa F. .
RENEWABLE ENERGY, 2019, 140 :152-176
[6]   Al-Si @ Al2O3 @ mullite microcapsules for thermal energy storage: Preparation and thermal properties [J].
Han, Cangjuan ;
Gu, Huazhi ;
Zhang, Meijie ;
Huang, Ao ;
Zhang, Yi ;
Wang, Yao .
SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2020, 217
[7]   Screening of high melting point phase change materials (PCM) in solar thermal concentrating technology based on CLFR [J].
Hoshi, A ;
Mills, DR ;
Bittar, A ;
Saitoh, TS .
SOLAR ENERGY, 2005, 79 (03) :332-339
[8]  
IEA, 2020, Concentrating Solar Power (CSP)
[9]  
Japan Society of Thermophysical Properties, 2008, THERMOPHYSICAL PROPE, P118
[10]   Solar energy storage using phase change materials [J].
Kenisarin, Murat ;
Mahkamov, Khamid .
RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2007, 11 (09) :1913-1965