Sobolev's embedding theorem for a domain with irregular boundary

被引:41
作者
Besov, OV [1 ]
机构
[1] RAS, Steklov Math Inst, Moscow, Russia
关键词
D O I
10.1070/SM2001v192n03ABEH000548
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In Sobolev's embedding theorem, W-p(s)(G) subset of L-q(G), the relations between admissible smoothness parameters and integrability parameters are determined by the geometric properties of the domain G. In the present paper this result and the corresponding estimates of weak type are established for domains with irregular boundaries and in the case of weighted L-p and L-q-spaces.
引用
收藏
页码:323 / 346
页数:24
相关论文
共 18 条
[1]  
[Anonymous], 1999, T MATEMATICHESKOGO I
[2]  
[Anonymous], T TBILIS MAT I RAZMA
[3]  
Besov O.V., 1978, INTEGRAL REPRESENTAT, VI
[4]  
BESOV OV, 2000, DOKL AKAD NAUK, V373, P131
[5]  
Besov OV, 1997, T MAT I STEKLOVA, V214, P25
[6]  
GLOBENKO IG, 1962, MAT SBORNIK, V57, P210
[7]  
Gol'dshtein V.M., 1983, Introduction to the Theory of Functions with Generalized Derivatives and Quasiconformal Mappings
[8]   Isoperimetric inequalities and imbedding theorems in irregular domains [J].
Hajlasz, P ;
Koskela, P .
JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 1998, 58 :425-450
[9]  
Kilpeläinen T, 2000, Z ANAL ANWEND, V19, P369
[10]  
KOKILASHVILI VM, 1985, DOKL AKAD NAUK SSSR+, V282, P1304