A thin-film equation for viscoelastic liquids of Jeffreys type

被引:37
作者
Rauscher, M
Münch, A
Wagner, B
Blossey, R
机构
[1] Max Planck Inst Metallforsch, D-70569 Stuttgart, Germany
[2] Univ Stuttgart, ITAP, D-70569 Stuttgart, Germany
[3] Humboldt Univ, Math Inst, D-10099 Berlin, Germany
[4] Weierstrass Inst Appl Anal & Stochast WIAS, D-10117 Berlin, Germany
[5] IEMN, Interdisciplinary Res Inst, F-59652 Villeneuve Dascq, France
关键词
D O I
10.1140/epje/i2005-10016-8
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
We derive a novel thin-film equation for linear viscoelastic media describable by generalized Maxwell or Jeffreys models. As a first application of this equation we discuss the shape of a liquid rim near a dewetting front. Although the dynamics of the liquid is equivalent to that of a phenomenological model recently proposed by Herminghaus et al. (S. Herminghaus, R. Seemann, K. Jacobs, Phys. Rev. Lett. 89, 056101 (2002)), the liquid rim profile in our model always shows oscillatory behaviour, contrary to that obtained in the former. This difference in behaviour is attributed to a different treatment of slip in both models.
引用
收藏
页码:373 / 379
页数:7
相关论文
共 23 条
[1]   Complex dewetting scenarios captured by thin-film models [J].
Becker, J ;
Grün, G ;
Seemann, R ;
Mantz, H ;
Jacobs, K ;
Mecke, KR ;
Blossey, R .
NATURE MATERIALS, 2003, 2 (01) :59-63
[2]  
BIRD RB, 1977, DYNAMICS POLYM FLUID, V1
[3]  
Bohme G., 2000, Stromungsmechanik Nicht-Newtonscher Fluide
[4]   Spreading dynamics of a shear thinning liquid [J].
Carre, A ;
Eustache, F .
COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE II FASCICULE B-MECANIQUE PHYSIQUE ASTRONOMIE, 1997, 325 (12) :709-718
[5]   Fluid coating from a polymer solution [J].
de Ryck, A ;
Quere, D .
LANGMUIR, 1998, 14 (07) :1911-1914
[6]   Viscoelastic dynamics of polymer thin films and surfaces [J].
Herminghaus, S ;
Jacobs, K ;
Seemann, R .
EUROPEAN PHYSICAL JOURNAL E, 2003, 12 (01) :101-110
[7]   Generic morphologies of viscoelastic dewetting fronts [J].
Herminghaus, S ;
Seemann, R ;
Jacobs, K .
PHYSICAL REVIEW LETTERS, 2002, 89 (05) :1-056101
[8]   The spectrum of surface waves on viscoelastic liquids of arbitrary depth [J].
Jackle, J .
JOURNAL OF PHYSICS-CONDENSED MATTER, 1998, 10 (32) :7121-7131
[9]   Transient two-dimensional coating flow of a viscoelastic fluid film on a substrate of arbitrary shape [J].
Khayat, RE .
JOURNAL OF NON-NEWTONIAN FLUID MECHANICS, 2000, 95 (2-3) :199-233
[10]  
KONRAD R, 2004, UNPUB PHYS REV LETT