Density of eigenvalues of random normal matrices

被引:44
作者
Elbau, P [1 ]
Felder, G [1 ]
机构
[1] ETH Zentrum, Dept Math, CH-8092 Zurich, Switzerland
关键词
D O I
10.1007/s00220-005-1372-z
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The relation between random normal matrices and conformal mappings discovered by Wiegmann and Zabrodin is made rigorous by restricting normal matrices to have spectrum in a bounded set. It is shown that for a suitable class of potentials the asymptotic density of eigenvalues is uniform with support in the interior domain of a simple smooth curve.
引用
收藏
页码:433 / 450
页数:18
相关论文
共 10 条
[1]   On the structure of correlation functions in the normal matrix model [J].
Chau, LL ;
Zaboronsky, O .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1998, 196 (01) :203-247
[2]  
DAVIS PJ, 1974, CARUS MATH MONOGRAPH, V17
[3]  
DEIFT PA, 1999, LECT NOTES MATH COUR, V3
[4]   On fluctuations of eigenvalues of random hermitian matrices [J].
Johansson, K .
DUKE MATHEMATICAL JOURNAL, 1998, 91 (01) :151-204
[5]  
KOSTOV IK, 2001, MATH SCI RES I PUBL, V40, P285
[6]  
KRICHEVER I, 2003, INTEGRABLE STRUCTURE
[7]   Integrable structure of the Dirichlet boundary problem in two dimensions [J].
Marshakov, A ;
Wiegmann, P ;
Zabrodin, A .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2002, 227 (01) :131-153
[8]  
Saff E. B., 1997, GRUNDLEHREN MATH WIS, V316
[9]   INTEGRABLE HIERARCHIES AND DISPERSIONLESS LIMIT [J].
TAKASAKI, K ;
TAKEBE, T .
REVIEWS IN MATHEMATICAL PHYSICS, 1995, 7 (05) :743-808
[10]   Conformal maps and integrable hierarchies [J].
Wiegmann, PB ;
Zabrodin, A .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2000, 213 (03) :523-538