CONTROLLING SPATIAL INHOMOGENEITY IN PROTOTYPICAL MULTIPHASE MICROSTRUCTURES

被引:2
作者
Fraczek, D. [1 ]
Piasecki, R. [2 ]
Olchawa, W. [2 ]
Wisniowski, R. [2 ]
机构
[1] Opole Univ Technol, Dept Mat Phys, Katowicka 48, PL-45061 Opole, Poland
[2] Univ Opole, Inst Phys, Oleska 48, PL-45052 Opole, Poland
来源
ACTA PHYSICA POLONICA B | 2017年 / 48卷 / 08期
关键词
RECONSTRUCTION;
D O I
10.5506/APhysPolB.48.1433
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
A wide variety of real random composites can be studied by means of prototypes of multiphase microstructures with a controllable spatial inhomogeneity. To create them, we propose a versatile model of randomly overlapping super-spheres of a given radius and deformed in their shape by the parameter p. With the help of the so-called decomposable entropic measure, a clear dependence of the phase inhomogeneity degree on the values of the parameter p is found. Thus, a leading trend in changes of the phase inhomogeneity can be forecast. It makes searching for possible structure/property relations easier. For the chosen values of p, examples of two and three-phase prototypical microstructures show how the phase inhomogeneity degree evolves at different length scales. The approach can also be applied to preparing the optimal starting configurations in reconstructing real materials.
引用
收藏
页码:1433 / 1440
页数:8
相关论文
共 26 条
[1]  
[Anonymous], 2003, HETEROGENEOUS MAT 1
[2]   Stochastic microstructure characterization and reconstruction via supervised learning [J].
Bostanabad, Ramin ;
Bui, Anh Tuan ;
Xie, Wei ;
Apley, Daniel W. ;
Chen, Wei .
ACTA MATERIALIA, 2016, 103 :89-102
[3]   Transport Properties of Stochastically Reconstructed Porous Media with Improved Pore Connectivity [J].
Capek, P. ;
Hejtmanek, V. ;
Kolafa, J. ;
Brabec, L. .
TRANSPORT IN POROUS MEDIA, 2011, 88 (01) :87-106
[4]   Stable-phase method for hierarchical annealing in the reconstruction of porous media images [J].
Chen, DongDong ;
Teng, Qizhi ;
He, Xiaohai ;
Xu, Zhi ;
Li, Zhengji .
PHYSICAL REVIEW E, 2014, 89 (01)
[5]   Decomposable multiphase entropic descriptor [J].
Fraczek, D. ;
Piasecki, R. .
PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2014, 399 :75-81
[6]   Microstructure sensitive design for performance optimization [J].
Fullwood, David T. ;
Niezgoda, Stephen R. ;
Adams, Brent L. ;
Kalidindi, Surya R. .
PROGRESS IN MATERIALS SCIENCE, 2010, 55 (06) :477-562
[7]   Reconstruction of three-dimensional porous media from a single two-dimensional image using three-step sampling [J].
Gao, MingLiang ;
He, XiaoHai ;
Teng, QiZhi ;
Zuo, Chen ;
Chen, DongDong .
PHYSICAL REVIEW E, 2015, 91 (01)
[8]   Percolation phase diagrams for multi-phase models built on the overlapping sphere model [J].
Garboczi, E. J. .
PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2016, 442 :156-168
[9]   Accurate modeling and reconstruction of three-dimensional percolating filamentary microstructures from two-dimensional micrographs via dilation-erosion method [J].
Guo, En-Yu ;
Chawla, Nikhilesh ;
Jing, Tao ;
Torquato, Salvatore ;
Jiao, Yang .
MATERIALS CHARACTERIZATION, 2014, 89 :33-42
[10]   Distinctive features arising in maximally random jammed packings of superballs [J].
Jiao, Y. ;
Stillinger, F. H. ;
Torquato, S. .
PHYSICAL REVIEW E, 2010, 81 (04)