Blow up and global existence in a nonlinear viscoelastic wave equation

被引:209
作者
Messaoudi, SA [1 ]
机构
[1] King Fahd Univ Petr & Minerals, Dept Math Sci, Dhahran 31261, Saudi Arabia
关键词
nonlinear damping; negative initial energy; viscoelastic; blow up; finite time; global existence;
D O I
10.1002/mana.200310104
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper the nonlinear viscoelastic wave equation u(tt) - Deltau + integral(0)(t) g(t - tau)Deltau(tau) dtau + au(t) \u(t)\(m-2) = bu \u\(p-2) associated with initial and Dirichlet boundary conditions is considered. Under suitable conditions on g, it is proved that any weak solution with negative initial energy blows up in finite time if p > m. Also the case of a stronger damping is considered and it is showed that solutions exist globally for any initial data, in the appropriate space, provided that m > p. (C) 2003 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
引用
收藏
页码:58 / 66
页数:9
相关论文
共 21 条
[1]   Asymptotic stability and energy decay rates for solutions of the wave equation with memory in a star-shaped domain [J].
Aassila, M ;
Cavalcanti, MM ;
Soriano, JA .
SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2000, 38 (05) :1581-1602
[2]  
[Anonymous], 1998, ESAIM CONTR OPTIM CA
[4]  
CAVALCANTI M. M., 2001, Differential and Integral Equations, V14, P85
[5]  
CAVALCANTI M. M., 2002, Elect. J. Diff. Eqs, V2002, P1
[6]   Existence and uniform decay for a non-linear viscoelastic equation with strong damping [J].
Cavalcanti, MM ;
Cavalcanti, VND ;
Ferreira, J .
MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2001, 24 (14) :1043-1053
[7]   EXISTENCE OF A SOLUTION OF THE WAVE-EQUATION WITH NONLINEAR DAMPING AND SOURCE TERMS [J].
GEORGIEV, V ;
TODOROVA, G .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1994, 109 (02) :295-308
[8]   DECAY-ESTIMATES FOR SOME SEMILINEAR DAMPED HYPERBOLIC PROBLEMS [J].
HARAUX, A ;
ZUAZUA, E .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 1988, 100 (02) :191-206
[9]  
Kalantarov V. K., 1978, Journal of Soviet Mathematics, V10, P53, DOI 10.1007/BF01109723
[10]  
Kopackova M, 1989, Comment. Math. Univ. Carolin, V30, P713