Three-dimensional low-defect carbon nanotube/nitrogen-doped graphene hybrid aerogel-supported Pt nanoparticles as efficient electrocatalysts toward the methanol oxidation reaction

被引:95
作者
Yan, Minmin [1 ]
Jiang, Quanguo [1 ]
Zhang, Tao [1 ]
Wang, Jiayu [2 ]
Yang, Lu [1 ]
Lu, Zhiyong [1 ]
He, Haiyan [1 ]
Fu, Yongsheng [2 ]
Wang, Xin [2 ]
Huang, Huajie [1 ]
机构
[1] Hohai Univ, Coll Mech & Mat, Nanjing 210098, Jiangsu, Peoples R China
[2] Nanjing Univ Sci & Technol, Minist Educ, Key Lab Soft Chem & Funct Mat, Nanjing 210094, Jiangsu, Peoples R China
基金
中国博士后科学基金;
关键词
HIGH-PERFORMANCE ELECTROCATALYST; HIGHLY-ACTIVE ELECTROCATALYSTS; PD BIMETALLIC NANODENDRITES; FUEL-CELLS; REDUCED GRAPHENE; IN-SITU; PLATINUM NANOPARTICLES; 3D ARCHITECTURES; GRAPHITE OXIDE; IONIC-LIQUID;
D O I
10.1039/c8ta05124k
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Although direct methanol fuel cells present a huge potential for application in modern society, the lack of high-efficiency anode catalysts with acceptable cost has largely hindered their large-scale commercialization. Here, we demonstrate a bottom-up approach for the fabrication of ultrafine Pt nanoparticles dispersed on 3D low-defect carbon nanotube/nitrogen-doped graphene hybrid aerogels (Pt/LDCNT-NG) via a convenient and cost-effective self-assembly process. Both experiments and theoretical calculations reveal that the rationally assembled 3D Pt/LDCNT-NG architectures possess a low defect density, optimized electronic structure, and enhanced Pt stability, thus showing high electrocatalytic activity as well as a long lifespan toward the methanol oxidation reaction, which are far superior to those of conventional Pt/carbon black, Pt/acid-treated CNT, Pt/graphene, and Pt/nitrogen-doped graphene catalysts. It is anticipated that the synthetic strategy presented here can be further extended to the construction of various 3D heteroatom-doped low-defect carbonaceous nanomaterials that contain metals or metal oxides, which are conducive to the development of high-performance energy storage and conversion devices.
引用
收藏
页码:18165 / 18172
页数:8
相关论文
共 62 条
[1]  
[Anonymous], ANGEW CHEM, DOI DOI 10.1021/jp0516846
[2]   Simple synthesis of macroporous carbon-graphene composites and their use as a support for Pt electrocatalysts [J].
Bo, Xiangjie ;
Guo, Liping .
ELECTROCHIMICA ACTA, 2013, 90 :283-290
[3]   Ni2P enhances the activity and durability of the Pt anode catalyst in direct methanol fuel cells [J].
Chang, Jinfa ;
Feng, Ligang ;
Liu, Changpeng ;
Xing, Wei ;
Hu, Xile .
ENERGY & ENVIRONMENTAL SCIENCE, 2014, 7 (05) :1628-1632
[4]   Self-Assembly and Embedding of Nanoparticles by In Situ Reduced Graphene for Preparation of a 3D Graphene/Nanoparticle Aerogel [J].
Chen, Wufeng ;
Li, Sirong ;
Chen, Chunhua ;
Yan, Lifeng .
ADVANCED MATERIALS, 2011, 23 (47) :5679-+
[5]   Synthesis of surface-functionalized graphene nanosheets with high Pt-loadings and their applications to methanol electrooxidation [J].
Choi, Sung Mook ;
Seo, Min Ho ;
Kim, Hyung Ju ;
Kim, Won Bae .
CARBON, 2011, 49 (03) :904-909
[6]   Ionic-Liquid-Assisted Preparation of Carbon Nanotube-Supported Uniform Noble Metal Nanoparticles and Their Enhanced Catalytic Performance [J].
Chu, Haibin ;
Shen, Yihong ;
Lin, Liang ;
Qin, Xiaojun ;
Feng, Ge ;
Lin, Ziyin ;
Wang, Jinyong ;
Liu, Haichao ;
Li, Yan .
ADVANCED FUNCTIONAL MATERIALS, 2010, 20 (21) :3747-3752
[7]   Opportunities and challenges for a sustainable energy future [J].
Chu, Steven ;
Majumdar, Arun .
NATURE, 2012, 488 (7411) :294-303
[8]   Electrical Energy Storage for the Grid: A Battery of Choices [J].
Dunn, Bruce ;
Kamath, Haresh ;
Tarascon, Jean-Marie .
SCIENCE, 2011, 334 (6058) :928-935
[9]   Pt nanocrystals grown on three-dimensional architectures made from graphene and MoS2 nanosheets: Highly efficient multifunctional electrocatalysts toward hydrogen evolution and methanol oxidation reactions [J].
Gao, Zhiqiang ;
Li, Miaomiao ;
Wang, Jiayu ;
Zhu, Jixin ;
Zhao, Xianmin ;
Huang, Huajie ;
Zhang, Jianfeng ;
Wu, Yuping ;
Fu, Yongsheng ;
Wang, Xin .
CARBON, 2018, 139 :369-377
[10]   A Bottom-Up Approach to Build 3D Architectures from Nanosheets for Superior Lithium Storage [J].
Gong, Yongji ;
Yang, Shubin ;
Zhan, Liang ;
Ma, Lulu ;
Vajtai, Robert ;
Ajayan, Pulickel M. .
ADVANCED FUNCTIONAL MATERIALS, 2014, 24 (01) :125-130