Comparison of ceramic and polymeric membrane permeability and fouling using surface water

被引:339
作者
Hofs, Bas [1 ]
Ogier, Julien [1 ]
Vries, Dirk [1 ]
Beerendonk, Erwin F. [1 ]
Cornelissen, Emile R. [1 ]
机构
[1] KWR Watercycle Res Inst, NL-3430 BB Nieuwegein, Netherlands
关键词
Microfiltration; Natural organic matter; Low pressure membranes; Ultrafiltration; Water treatment; NATURAL ORGANIC-MATTER; FILTRATION; REMOVAL; MICROFILTRATION; PRETREATMENT; NANOFILTRATION; PERFORMANCE; ADSORPTION; VIRUSES; DESIGN;
D O I
10.1016/j.seppur.2011.03.025
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
The trans membrane pressure (TMP) increase at a constant flux of 150 Lm(-2) h(-1) due to membrane fouling by direct filtration with lake water is investigated for four ceramic (Al2O3, ZrO2, TiO2, SiC) and a PES/PVP polymeric microfiltration membrane(s). The membrane structures and compositions are characterised with permporometry (pore size, porosity) and XPS. The TiO2 and SiC membrane have a 5 and 24 times larger average pore size than expected based on supplier information. The TMP increase rate due to fouling inversely follows the measured pore size. Reversible fouling decreases in the order of polymeric approximate to Al2O3 approximate to ZrO2 > TiO2 > SiC, and for irreversible fouling polymeric > ZrO2 > Al2O3 > TiO2 > SiC. Removal of non purgeable organic carbon (NPOC) is around 30% for the ceramic membranes, and 13-25% for the polymeric membrane. The reversible NPOC load decreases in the following order (Al2O3 > (ZrO2 approximate to TiO2)) approximate to SiC > polymeric. The higher degree of fouling on the polymeric membrane is partly due to its lower volume/area ratio, compared to ceramic membranes. Mass balance analysis shows that 85 +/- 8% of the NPOC is accounted for. Thus, the used soaking method (pH 12 NaOH, >1 h) does not fully remove the NPOC, suggesting that a more aggressive cleaning solution should be used. (C) 2011 Elsevier B.V. All rights reserved.
引用
收藏
页码:365 / 374
页数:10
相关论文
共 49 条
[1]   Removal of divalent cations reduces fouling of ultrafiltration membranes [J].
Abrahamse, A. J. ;
Lipreau, C. ;
Li, S. ;
Heijman, S. G. J. .
JOURNAL OF MEMBRANE SCIENCE, 2008, 323 (01) :153-158
[2]   Negatively charged poly(vinylidene fluoride) microfiltration membranes by sulfonation [J].
Barona, Garry Nathaniel B. ;
Cha, Bong Jun ;
Jung, Bumsuk .
JOURNAL OF MEMBRANE SCIENCE, 2007, 290 (1-2) :46-54
[3]   AN EXPERIMENTAL-STUDY FOR THE DEVELOPMENT OF A QUALITATIVE MEMBRANE CLEANING MODEL [J].
BARTLETT, M ;
BIRD, MR ;
HOWELL, JA .
JOURNAL OF MEMBRANE SCIENCE, 1995, 105 (1-2) :147-157
[4]  
Buekenhoudt A, 2008, MEMBR SCI TECH SER, V13, P1, DOI 10.1016/S0927-5193(07)13001-1
[5]  
Ciora R.J., 2003, FLUIDPARTICLE SEP J, V15, P51
[6]  
CORNELISSEN ER, 2009, TECHNEAU SAFE DRINKI, P83
[7]  
Cousens DR, 2000, SURF INTERFACE ANAL, V29, P23, DOI 10.1002/(SICI)1096-9918(200001)29:1<23::AID-SIA689>3.0.CO
[8]  
2-Y
[9]   Solvent flux behavior and rejection characteristics of hydrophilic and hydrophobic mesoporous and microporous TiO2 and ZrO2 membranes [J].
Dobrak, A. ;
Verrecht, B. ;
Van den Dungen, H. ;
Buekenhoudt, A. ;
Vankelecom, I. F. J. ;
Van der Bruggen, B. .
JOURNAL OF MEMBRANE SCIENCE, 2010, 346 (02) :344-352
[10]  
FAN L, 2002, WATER SCI TECHNOL, P313