The H-polynomial of a semisimple monoid

被引:10
作者
Renner, Lex E. [1 ]
机构
[1] Univ Western Ontario, Dept Math, London, ON N6A 5B7, Canada
关键词
reductive monoid; H-polynomial; quasismooth;
D O I
10.1016/j.jalgebra.2007.06.012
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A semisimple monoid M is called quasismooth if M \ {0} has sufficiently mild singularities. We define a cellular decomposition of such monoids using the method of one-parameter subgroups. These cells turn out to be "almost" affine spaces. But they can also be described in terms of the idempotents and B x B-orbits of M. This leads to a number of combinatorial results about the inverse monoid of B x B-orbits of M. In particular, we obtain fundamental information about the H-polynomial of M. (C) 2007 Elsevier Inc. All rights reserved.
引用
收藏
页码:360 / 376
页数:17
相关论文
共 12 条
[1]   THEOREMS ON ACTIONS OF ALGEBRAIC GROUPS [J].
BIALYNIC.A .
ANNALS OF MATHEMATICS, 1973, 98 (03) :480-497
[2]  
Danilov V.I., 1978, Uspekhi Mat. Nauk, V33, P85, DOI 10.1070/RM1978v033n02ABEH002305
[3]   THE CANONICAL COMPACTIFICATION OF A FINITE-GROUP OF LIE TYPE [J].
PUTCHA, MS ;
RENNER, LE .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1993, 337 (01) :305-319
[4]   THE SYSTEM OF IDEMPOTENTS AND THE LATTICE OF J-CLASSES OF REDUCTIVE ALGEBRAIC MONOIDS [J].
PUTCHA, MS ;
RENNER, LE .
JOURNAL OF ALGEBRA, 1988, 116 (02) :385-399
[5]  
Renner L. E., 2005, ENCY MATH SCI, V134
[6]   ANALOG OF THE BRUHAT DECOMPOSITION FOR ALGEBRAIC MONOIDS [J].
RENNER, LE .
JOURNAL OF ALGEBRA, 1986, 101 (02) :303-338
[7]   CLASSIFICATION OF SEMISIMPLE VARIETIES [J].
RENNER, LE .
JOURNAL OF ALGEBRA, 1989, 122 (02) :275-287
[8]   An explicit cell decomposition of the wonderful compactification of a semisimple algebraic group [J].
Renner, LE .
CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 2003, 46 (01) :140-148
[9]   CLASSIFICATION OF SEMISIMPLE ALGEBRAIC MONOIDS [J].
RENNER, LE .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1985, 292 (01) :193-223
[10]  
SOLOMON L, 1995, SEMIGROUPS FORMAL LA, P295