Classification and reconstruction of optical quantum states with deep neural networks

被引:49
作者
Ahmed, Shahnawaz [1 ]
Sanchez Munoz, Carlos [2 ,3 ]
Nori, Franco [4 ,5 ,6 ]
Kockum, Anton Frisk [1 ]
机构
[1] Chalmers Univ Technol, Dept Microtechnol & Nanosci, S-41296 Gothenburg, Sweden
[2] Univ Autonoma Madrid, Dept Fis Teor Mat Condensada, Madrid 28049, Spain
[3] Univ Autonoma Madrid, Condensed Matter Phys Ctr IFIMAC, Madrid 28049, Spain
[4] RIKEN, Cluster Pioneering Res, Theoret Quantum Phys Lab, Wako, Saitama 3510198, Japan
[5] RIKEN, Ctr Quantum Comp RQC, Wako, Saitama 3510198, Japan
[6] Univ Michigan, Dept Phys, Ann Arbor, MI 48109 USA
来源
PHYSICAL REVIEW RESEARCH | 2021年 / 3卷 / 03期
基金
日本学术振兴会; 日本科学技术振兴机构;
关键词
LEARNING ALGORITHM; !text type='PYTHON']PYTHON[!/text] FRAMEWORK; TOMOGRAPHY; DYNAMICS; QUTIP;
D O I
10.1103/PhysRevResearch.3.033278
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We apply deep-neural-network-based techniques to quantum state classification and reconstruction. Our methods demonstrate high classification accuracies and reconstruction fidelities, even in the presence of noise and with little data. Using optical quantum states as examples, we first demonstrate how convolutional neural networks (CNNs) can successfully classify several types of states distorted by, e.g., additive Gaussian noise or photon loss. We further show that a CNN trained on noisy inputs can learn to identify the most important regions in the data, which potentially can reduce the cost of tomography by guiding adaptive data collection. Secondly, we demonstrate reconstruction of quantum-state density matrices using neural networks that incorporate quantum-physics knowledge. The knowledge is implemented as custom neural-network layers that convert outputs from standard feed-forward neural networks to valid descriptions of quantum states. Any standard feed-forward neural-network architecture can be adapted for quantum state tomography (QST) with our method. We present further demonstrations of our proposed QST technique with conditional generative adversarial networks (QST-CGAN) [Ahmed et al., Phys. Rev. Lett. 127, 110502 (2021)]. We motivate our choice of a learnable loss function within an adversarial framework by demonstrating that the QST-CGAN outperforms, across a range of scenarios, generative networks trained with standard loss functions. For pure states with additive or convolutional Gaussian noise, the QST-CGAN is able to adapt to the noise and reconstruct the underlying state. The QST-CGAN reconstructs states using up to two orders of magnitude fewer iterative steps than iterative and accelerated projected-gradient-based maximum-likelihood estimation (MLE) methods. We also demonstrate that the QST-CGAN can reconstruct both pure and mixed states from two orders of magnitude fewer randomly chosen data points than these MLE methods. Our paper opens possibilities to use state-of-the-art deep-learning methods for quantum state classification and reconstruction under various types of noise.
引用
收藏
页数:36
相关论文
共 187 条
[1]  
Abadi M, 2016, PROCEEDINGS OF OSDI'16: 12TH USENIX SYMPOSIUM ON OPERATING SYSTEMS DESIGN AND IMPLEMENTATION, P265
[2]   Gradient-based optimal control of open quantum systems using quantum trajectories and automatic differentiation [J].
Abdelhafez, Mohamed ;
Schuster, David, I ;
Koch, Jens .
PHYSICAL REVIEW A, 2019, 99 (05)
[3]  
ACKLEY DH, 1985, COGNITIVE SCI, V9, P147
[4]  
Agrawal R, 2021, J MACH LEARN RES, V22
[5]   Quantum State Tomography with Conditional Generative Adversarial Networks [J].
Ahmed, Shahnawaz ;
Sanchez Munoz, Carlos ;
Nori, Franco ;
Kockum, Anton Frisk .
PHYSICAL REVIEW LETTERS, 2021, 127 (14)
[6]   Adaptive compressive tomography: A numerical study [J].
Ahn, D. ;
Teo, Y. S. ;
Jeong, H. ;
Koutny, D. ;
Rehacek, J. ;
Hradil, Z. ;
Leuchs, G. ;
Sanchez-Soto, L. L. .
PHYSICAL REVIEW A, 2019, 100 (01)
[7]   Adaptive Compressive Tomography with No a priori Information [J].
Ahn, D. ;
Teo, Y. S. ;
Jeong, H. ;
Bouchard, F. ;
Hufnagel, F. ;
Karimi, E. ;
Koutny, D. ;
Rehacek, J. ;
Hradil, Z. ;
Leuchs, G. ;
Sanchez-Soto, L. L. .
PHYSICAL REVIEW LETTERS, 2019, 122 (10)
[8]   Performance and structure of single-mode bosonic codes [J].
Albert, Victor V. ;
Noh, Kyungjoo ;
Duivenvoorden, Kasper ;
Young, Dylan J. ;
Brierley, R. T. ;
Reinhold, Philip ;
Vuillot, Christophe ;
Li, Linshu ;
Shen, Chao ;
Girvin, S. M. ;
Terhal, Barbara M. ;
Jiang, Liang .
PHYSICAL REVIEW A, 2018, 97 (03)
[9]   A TRANSFORMATIONAL PROPERTY OF THE HUSIMI FUNCTION AND ITS RELATION TO THE WIGNER FUNCTION AND SYMPLECTIC TOMOGRAMS [J].
Andreev, V. A. ;
Davidovic, D. M. ;
Davidovic, L. D. ;
Davidovic, M. D. ;
Man'ko, V. I. ;
Man'ko, M. A. .
THEORETICAL AND MATHEMATICAL PHYSICS, 2011, 166 (03) :356-368
[10]  
[Anonymous], 2014, arXiv