Martingale-coboundary representation for stationary random fields

被引:7
作者
Volny, Dalibor [1 ]
机构
[1] Univ Rouen Normandie, UMR 6085, Lab Math Raphael Salem, F-76801 St Etienne Du Rouvray, France
关键词
Random field; Z(d) action; orthomartingale; martingale-coboundary representation; central limit theorems; CENTRAL-LIMIT-THEOREM; WEAK INVARIANCE-PRINCIPLE; SUMS;
D O I
10.1142/S0219493718500119
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We prove a martingale-coboundary representation for random fields with a completely commuting filtration. For random variables in L-2, we present a necessary and sufficient condition which is a generalization of Heyde's condition for one-dimensional processes from 1975. For L-p spaces with 2 <= p < infinity we give a necessary and sufficient condition which extends Volny's result from 1993 to random fields and improves condition of El Machkouri and Giraudo from 2016. A new sufficient condition is presented which for dimension one improves Gordin's condition from 1969. In application, new weak invariance principle and estimates of large deviations are found.
引用
收藏
页数:18
相关论文
共 50 条
[21]   Kernel density estimation for stationary random fields [J].
El Machkouri, Mohamed .
ALEA-LATIN AMERICAN JOURNAL OF PROBABILITY AND MATHEMATICAL STATISTICS, 2014, 11 (01) :259-279
[22]   An invariance principle for stationary random fields under Hannan's condition [J].
Volny, Dalibor ;
Wang, Yizao .
STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2014, 124 (12) :4012-4029
[23]   Stationary symmetric α-stable discrete parameter random fields [J].
Roy, Parthanil ;
Samorodnitsky, Gennady .
JOURNAL OF THEORETICAL PROBABILITY, 2008, 21 (01) :212-233
[24]   Statistical inference on stationary shot noise random fields [J].
Lerbet, Antoine .
STATISTICAL INFERENCE FOR STOCHASTIC PROCESSES, 2023, 26 (03) :551-580
[25]   Statistical inference on stationary shot noise random fields [J].
Antoine Lerbet .
Statistical Inference for Stochastic Processes, 2023, 26 :551-580
[26]   Stationary Symmetric α-Stable Discrete Parameter Random Fields [J].
Parthanil Roy ;
Gennady Samorodnitsky .
Journal of Theoretical Probability, 2008, 21 :212-233
[27]   Martingale approximations for sums of stationary processes [J].
Wu, WB ;
Woodroofe, M .
ANNALS OF PROBABILITY, 2004, 32 (02) :1674-1690
[28]   Strong laws of large numbers for random fields in martingale type p Banach spaces [J].
Le Van Dung ;
Nguyen Duy Tien .
STATISTICS & PROBABILITY LETTERS, 2010, 80 (9-10) :756-763
[29]   Stochastic representation for anisotropic permeability tensor random fields [J].
Guilleminot, Johann ;
Soize, Christian ;
Ghanem, Roger G. .
INTERNATIONAL JOURNAL FOR NUMERICAL AND ANALYTICAL METHODS IN GEOMECHANICS, 2012, 36 (13) :1592-1608
[30]   Central Limit Theorem for Positively Associated Stationary Random Fields [J].
Bulinski, A. V. .
VESTNIK ST PETERSBURG UNIVERSITY-MATHEMATICS, 2011, 44 (02) :89-96