Symmetry classifications and reductions of some classes of (2+1)-nonlinear heat equation

被引:18
作者
Ahmad, A. [1 ]
Bokhari, Ashfaque H. [1 ]
Kara, A. H. [2 ]
Zaman, F. D. [1 ]
机构
[1] King Fahd Univ Petr & Minerals, Dept Math Sci, Dhahran 31261, Saudi Arabia
[2] Univ Witwatersrand, Sch Math, ZA-2050 Johannesburg, South Africa
关键词
two-dimensional nonlinear heat equation; symmetry classification;
D O I
10.1016/j.jmaa.2007.07.002
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The (2 + 1)-nonlinear heat equation u(t) - f (u)(u(xx) + u(yy)) = 0 is considered. A symmetry classification of the equation using Lie group method is presented and reduction to the first- or second-order ordinary differential equations is provided. (c) 2007 Elsevier Inc. All rights reserved.
引用
收藏
页码:175 / 181
页数:7
相关论文
共 11 条
[1]  
[Anonymous], J NONLINEAR MATH PHY
[2]  
[Anonymous], J NONLINEAR MATH PHY
[3]  
Bluman G. W., 1989, Symmetries and Differential Equations
[4]  
Cantwell BJ., 2002, Introduction to Symmetry Analysis
[5]   SYMMETRY REDUCTIONS AND EXACT-SOLUTIONS OF A CLASS OF NONLINEAR HEAT-EQUATIONS [J].
CLARKSON, PA ;
MANSFIELD, EL .
PHYSICA D-NONLINEAR PHENOMENA, 1994, 70 (03) :250-288
[6]   Separation of variables for the 1-dimensional non-linear diffusion equation [J].
Doyle, PW ;
Vassiliou, PJ .
INTERNATIONAL JOURNAL OF NON-LINEAR MECHANICS, 1998, 33 (02) :315-326
[7]   Separation of variables of a generalized porous medium equation with nonlinear source [J].
Estévez, PG ;
Qu, CZ ;
Zhang, SL .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2002, 275 (01) :44-59
[8]   The integrable nonlinear degenerate diffusion equation u(t)=[f(u)u(x)(-1)](x) and its relatives [J].
Goard, JM ;
Broadbridge, P ;
Arrigo, DJ .
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 1996, 47 (06) :926-942
[9]  
Ibragimov N. H., 1999, ELEMENTARY LIE GROUP
[10]  
Olver PJ., 1986, Applications of Lie groups to differential equations, DOI 10.1007/978-1-4684-0274-2