Persistence of Banach lattices under nonlinear order isomorphisms

被引:0
作者
Leung, Denny H. [1 ]
Tang, Wee-Kee [2 ]
机构
[1] Natl Univ Singapore, Dept Math, Singapore 119076, Singapore
[2] Nanyang Technol Univ, Div Math Sci, Singapore 637371, Singapore
关键词
Nonlinear order isomorphism; Lattice isomorphism; Banach lattice; AM-space;
D O I
10.1007/s11117-015-0382-0
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Ordered vector spaces E and F are said to be order isomorphic if there is a (not necessarily linear) bijection such that if and only if for all . We investigate some situations under which an order isomorphism between two Banach lattices implies the persistence of some linear lattice structure. For instance, it is shown that if a Banach lattice E is order isomorphic to C(K) for some compact Hausdorff space K, then E is (linearly) isomorphic to C(K) as a Banach lattice. Similar results hold for Banach lattices order isomorphic to , and for Banach lattices that contain a closed sublattice order isomorphic to .
引用
收藏
页码:709 / 717
页数:9
相关论文
共 7 条
[1]  
[Anonymous], 1991, Banach lattices
[2]   Homomorphisms on lattices of continuous functions [J].
Cabello Sanchez, Felix .
POSITIVITY, 2008, 12 (02) :341-362
[3]   DISJOINT SEQUENCES IN BANACH-LATTICES AND CONE-ABSOLUTELY-SUMMING OPERATORS [J].
CARTWRIGHT, DI ;
LOTZ, HP .
ARCHIV DER MATHEMATIK, 1977, 28 (05) :525-532
[4]  
Kalton N., 2003, HDB GEOMETRY BANACH, V2
[5]  
Lindenstrauss J, 1979, CLASSICAL BANACH SPA
[6]   INVARIANT SUBLATTICES [J].
Radjavi, Heydar ;
Troitsky, Vladimir G. .
ILLINOIS JOURNAL OF MATHEMATICS, 2008, 52 (02) :437-462
[7]  
Schaefer H.H., 1974, Die Grundlehren der mathematischen Wissenschaften, V215