IFGFA: Identification of featured genes from genomic data using factor analysis

被引:0
作者
Fu, C. H. [1 ,2 ]
Deng, S. [2 ]
Wu, J. H. [3 ]
Wu, X. Q. [1 ]
Fu, Z. H. [2 ]
Yu, Z. G. [1 ]
机构
[1] Xiangtan Univ, Sch Math & Computat Sci, Xiangtan, Peoples R China
[2] Shenyang Normal Univ, Sch Math & Syst Sci, Shenyang, Peoples R China
[3] Shenyang Normal Univ, Foreign Language Dept, Shenyang, Peoples R China
基金
中国国家自然科学基金;
关键词
Factor analysis; Featured gene; Gene expression profile; Multivariate statistics; SINGULAR-VALUE DECOMPOSITION; BREAST-CANCER; EXPRESSION; PREDICTION; CLASSIFICATION; SIGNATURES; DISCOVERY; NETWORKS; OUTCOMES; MODELS;
D O I
10.4238/gmr.15038803
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
In this study, a software tool (IFGFA) for identification of featured genes from gene expression data based on latent factor analysis was developed. Despite the availability of computational methods and statistical models appropriate for analyzing special genomic data, IFGFA provides a platform for predicting colon cancer-related genes and can be applied to other cancer types. The computational framework behind IFGFA is based on the well-established Bayesian factor and regression model and prior knowledge about the gene from OMIM. We validated the predicted genes by analyzing somatic mutations in patients. An interface was developed to enable users to run the computational framework efficiently through visual programming. IFGFA is executable in a Windows system and does not require other dependent software packages.
引用
收藏
页数:8
相关论文
共 23 条
[1]   Singular value decomposition for genome-wide expression data processing and modeling [J].
Alter, O ;
Brown, PO ;
Botstein, D .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2000, 97 (18) :10101-10106
[2]   Generalized singular value decomposition for comparative analysis of genome-scale expression data sets of two different organisms [J].
Alter, O ;
Brown, PO ;
Botstein, D .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2003, 100 (06) :3351-3356
[3]   OMIM.org: Online Mendelian Inheritance in Man (OMIM®), an online catalog of human genes and genetic disorders [J].
Amberger, Joanna S. ;
Bocchini, Carol A. ;
Schiettecatte, Francois ;
Scott, Alan F. ;
Hamosh, Ada .
NUCLEIC ACIDS RESEARCH, 2015, 43 (D1) :D789-D798
[4]   Gene Ontology: tool for the unification of biology [J].
Ashburner, M ;
Ball, CA ;
Blake, JA ;
Botstein, D ;
Butler, H ;
Cherry, JM ;
Davis, AP ;
Dolinski, K ;
Dwight, SS ;
Eppig, JT ;
Harris, MA ;
Hill, DP ;
Issel-Tarver, L ;
Kasarskis, A ;
Lewis, S ;
Matese, JC ;
Richardson, JE ;
Ringwald, M ;
Rubin, GM ;
Sherlock, G .
NATURE GENETICS, 2000, 25 (01) :25-29
[5]   Oncogenic pathway signatures in human cancers as a guide to targeted therapies [J].
Bild, AH ;
Yao, G ;
Chang, JT ;
Wang, QL ;
Potti, A ;
Chasse, D ;
Joshi, MB ;
Harpole, D ;
Lancaster, JM ;
Berchuck, A ;
Olson, JA ;
Marks, JR ;
Dressman, HK ;
West, M ;
Nevins, JR .
NATURE, 2006, 439 (7074) :353-357
[6]   High-Dimensional Sparse Factor Modeling: Applications in Gene Expression Genomics [J].
Carvalho, Carlos M. ;
Chang, Jeffrey ;
Lucas, Joseph E. ;
Nevins, Joseph R. ;
Wang, Quanli ;
West, Mike .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2008, 103 (484) :1438-1456
[7]   A Genomic Strategy to Elucidate Modules of Oncogenic Pathway Signaling Networks [J].
Chang, Jeffrey T. ;
Carvalho, Carlos ;
Mori, Seiichi ;
Bild, Andrea H. ;
Gatza, Michael L. ;
Wang, Quanli ;
Lucas, Joseph E. ;
Potti, Anil ;
Febbo, Phillip G. ;
West, Mike ;
Nevins, Joseph R. .
MOLECULAR CELL, 2009, 34 (01) :104-114
[8]   Latent factor analysis facilitates modelling of oncogenic genes for colon adenocarcinoma [J].
Fu, Changhe ;
Deng, Su ;
Song, Qiqing ;
Jing, Ling .
IET SYSTEMS BIOLOGY, 2013, 7 (05) :165-169
[9]   Molecular classification of cancer: Class discovery and class prediction by gene expression monitoring [J].
Golub, TR ;
Slonim, DK ;
Tamayo, P ;
Huard, C ;
Gaasenbeek, M ;
Mesirov, JP ;
Coller, H ;
Loh, ML ;
Downing, JR ;
Caligiuri, MA ;
Bloomfield, CD ;
Lander, ES .
SCIENCE, 1999, 286 (5439) :531-537
[10]   A new summarization method for affymetrix probe level data [J].
Hochreiter, S ;
Clevert, DA ;
Obermayer, K .
BIOINFORMATICS, 2006, 22 (08) :943-949