A comparison of mixed-integer programming models for nonconvex piecewise linear cost minimization problems

被引:142
作者
Croxton, KL [1 ]
Gendron, B
Magnanti, TL
机构
[1] Ohio State Univ, Fisher Coll Business, Columbus, OH 43210 USA
[2] Univ Montreal, Ctr Res Transports, Montreal, PQ H3C 3J7, Canada
[3] MIT, Sch Engn, Cambridge, MA 02139 USA
[4] MIT, Alfred P Sloan Sch Management, Cambridge, MA 02139 USA
关键词
piecewise linear; integer programming; linear relaxation; Lagrangian relaxation;
D O I
10.1287/mnsc.49.9.1268.16570
中图分类号
C93 [管理学];
学科分类号
12 ; 1201 ; 1202 ; 120202 ;
摘要
We study a generic, minimization problem with separable nonconvex piecewise linear costs, showing that the linear programming (LP) relaxation of three textbook mixed-integer programming formulations each approximates the cost function by its lower convex envelope. We also show a relationship between this result and classical Lagrangian duality theory.
引用
收藏
页码:1268 / 1273
页数:6
相关论文
共 22 条
  • [1] MODELING PIECEWISE-LINEAR CONCAVE COSTS IN A TREE PARTITIONING PROBLEM
    AGHEZZAF, EH
    WOLSEY, LA
    [J]. DISCRETE APPLIED MATHEMATICS, 1994, 50 (02) : 101 - 109
  • [2] A COMPOSITE ALGORITHM FOR A CONCAVE-COST NETWORK FLOW PROBLEM
    BALAKRISHNAN, A
    GRAVES, SC
    [J]. NETWORKS, 1989, 19 (02) : 175 - 202
  • [3] Bienstock D., 1996, INFORMS Journal on Computing, V8, P243, DOI 10.1287/ijoc.8.3.243
  • [4] CHAN L, 1997, SUPPLY CHAIN MANAGEM
  • [5] COMINETTI R, 1997, BRANCH BOUND METHOD
  • [6] Croxton, 1999, THESIS MIT CAMBRIDGE
  • [7] Models and methods for merge-in-transit operations
    Croxton, KL
    Gendron, B
    Magnanti, TL
    [J]. TRANSPORTATION SCIENCE, 2003, 37 (01) : 1 - 22
  • [8] CROXTON KL, 2002, VARIABLE DISAGGREGAT
  • [9] CROXTON KL, 2002, COMP MIXED INTEGER P
  • [10] Dantzig G. B., 1963, LINEAR PROGRAMMING E