Inhibition of human telomerase by 7-deaza-2′-deoxyguanosine nucleoside triphosphate analogs:: Potent inhibition by 6-thio-7-deaza-2′-deoxyguanosine 5′-triphosphate

被引:54
作者
Fletcher, TM [1 ]
Cathers, BE [1 ]
Ravikumar, KS [1 ]
Mamiya, BM [1 ]
Kerwin, SM [1 ]
机构
[1] Univ Texas, Coll Pharm, Austin, TX 78712 USA
关键词
D O I
10.1006/bioo.2000.1194
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
We have examined analogs of the previously reported 7-deaza-2'-deoxypurine nucleoside triphosphate series of human telomerase inhibitors. Two new telomerase-inhibiting nucleotides are reported: 6-methoxy-7-deaza-2'-deoxyguanosine 5'-triphosphate (OMDG-TP) and 6-thio-7-deaza-2' -deoxyguanosine 5'-triphosphate (TDG-TP). In particular, TDG-TP is a very potent inhibitor of human telomerase with an IC50 of 60 nM. TDG-TP can substitute for dGTP as a substrate for telomerase, but only at relatively high concentrations. Under conditions in which TDG-TP is the only available guanosine substrate, telomerase becomes nonprocessive synthesizing short products that appear to contain only one to three TDG residues. Similarly, the less potent telomerase inhibitor OMDG-TP gives rise to short telomerase products, but less efficiently than TDG-TP. We show here that TDG-TP, and to a lesser extent OMDG-TP, can serve as substrates for both templated (Klenow exo) and nontemplated (terminal transferase) DNA polymerases. For either polymerase, the products arising from TDG-TP are relatively short, and give rise to bands of unusual mobility under PAGE conditions. These anomalous bands overt. under treatment with DTT, to normal mobility bands. indicating that these products may contain thiol-labile disulfide linkages involving the incorporated TDG residues. This observation of potential TDG-crosslinks may have bearing on the mechanism of telomerase inhibition by this nucleotide analog. (C) 2001 Academic Press.
引用
收藏
页码:36 / 55
页数:20
相关论文
共 76 条
[1]  
ABGANDJE M, 1992, J MED CHEM, V35, P1418
[2]  
BAHLER J, 1994, CHROMOSOMA, V103, P129
[3]   HAIRPIN AND PARALLEL QUARTET STRUCTURES FOR TELOMERIC SEQUENCES [J].
BALAGURUMOORTHY, P ;
BRAHMACHARI, SK ;
MOHANTY, D ;
BANSAL, M ;
SASISEKHARAN, V .
NUCLEIC ACIDS RESEARCH, 1992, 20 (15) :4061-4067
[4]  
BALAGURUMOORTHY P, 1994, J BIOL CHEM, V269, P21858
[5]   STRUCTURE AND FUNCTION OF TELOMERES [J].
BLACKBURN, EH .
NATURE, 1991, 350 (6319) :569-573
[6]   Extension of life-span by introduction of telomerase into normal human cells [J].
Bodnar, AG ;
Ouellette, M ;
Frolkis, M ;
Holt, SE ;
Chiu, CP ;
Morin, GB ;
Harley, CB ;
Shay, JW ;
Lichtsteiner, S ;
Wright, WE .
SCIENCE, 1998, 279 (5349) :349-352
[7]   TELOMERE ELONGATION IN IMMORTAL HUMAN-CELLS WITHOUT DETECTABLE TELOMERASE ACTIVITY [J].
BRYAN, TM ;
ENGLEZOU, A ;
GUPTA, J ;
BACCHETTI, S ;
REDDEL, RR .
EMBO JOURNAL, 1995, 14 (17) :4240-4248
[8]   TELOMERE SHORTENING ASSOCIATED WITH CHROMOSOME INSTABILITY IS ARRESTED IN IMMORTAL CELLS WHICH EXPRESS TELOMERASE ACTIVITY [J].
COUNTER, CM ;
AVILION, AA ;
LEFEUVRE, CE ;
STEWART, NG ;
GREIDER, CW ;
HARLEY, CB ;
BACCHETTI, S .
EMBO JOURNAL, 1992, 11 (05) :1921-1929
[9]   PYRROLO[2,3-D]PYRIMIDINES [J].
DAVOLL, J .
JOURNAL OF THE CHEMICAL SOCIETY, 1960, (JAN) :131-138
[10]   NMR-based model of a telomerase-inhibiting compound bound to G-quadruplex DNA [J].
Fedoroff, OY ;
Salazar, M ;
Han, HY ;
Chemeris, VV ;
Kerwin, SM ;
Hurley, LH .
BIOCHEMISTRY, 1998, 37 (36) :12367-12374