Two R2R3-MYB proteins are broad repressors of flavonoid and phenylpropanoid metabolism in poplar

被引:161
|
作者
Ma, Dawei [1 ,2 ]
Reichelt, Michael [3 ]
Yoshida, Kazuko [1 ,2 ]
Gershenzon, Jonathan [3 ]
Constabel, C. Peter [1 ,2 ]
机构
[1] Univ Victoria, Ctr Forest Biol, 3800 Finnerty Rd, Victoria, BC V8P 5C2, Canada
[2] Univ Victoria, Dept Biol, 3800 Finnerty Rd, Victoria, BC V8P 5C2, Canada
[3] Max Planck Inst Chem Ecol, Dept Biochem, Hans Knoll Str 8, D-07745 Jena, Germany
来源
PLANT JOURNAL | 2018年 / 96卷 / 05期
基金
加拿大自然科学与工程研究理事会;
关键词
transcriptional repressor; gene regulatory network; plant secondary metabolism; phenolic metabolism; Populus tremula x tremuloides; MYB TRANSCRIPTION FACTOR; REGULATES PROANTHOCYANIDIN SYNTHESIS; ANTHOCYANIN BIOSYNTHESIS; FUNCTIONAL-CHARACTERIZATION; POPULUS-TRICHOCARPA; GENE ENCODES; ARABIDOPSIS; EXPRESSION; GRAPEVINE; PATHWAY;
D O I
10.1111/tpj.14081
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
The phenylpropanoid pathway leads to the production of many important plant secondary metabolites including lignin, chlorogenic acids, flavonoids, and phenolic glycosides. Early studies have demonstrated that flavonoid biosynthesis is transcriptionally regulated, often by a MYB, bHLH, and WDR transcription factor complex. In poplar, several R2R3 MYB transcription factors are known to be involved in flavonoid biosynthesis. Previous work determined that poplar MYB134 and MYB115 are major activators of the proanthocyanidin pathway, and also induce the expression of repressor-like MYB transcription factors. Here we characterize two new repressor MYBs, poplar MYB165 and MYB194, paralogs which comprise a subgroup of R2R3-MYBs distinct from previously reported poplar repressors. Both MYB165 and MYB194 repressed the activation of flavonoid promoters by MYB134 in transient activation assays, and both interacted with a co-expressed bHLH transcription factor, bHLH131, in yeast two-hybrid assays. Overexpression of MYB165 and MYB194 in hybrid poplar resulted in greatly reduced accumulation of several phenylpropanoids including anthocyanins, proanthocyanidins, phenolic glycosides, and hydroxycinnamic acid esters. Transcriptome analysis of MYB165- and MYB194-overexpressing poplars confirmed repression of many phenylpropanoid enzyme genes. In addition, other MYB genes as well as several shikimate pathway enzyme genes were downregulated by MYB165-overexpression. By contrast, leaf aromatic amino acid concentrations were greater in MYB165-overexpressing poplars. Our findings indicate that MYB165 is a major repressor of the flavonoid and phenylpropanoid pathway in poplar, and may also affect the shikimate pathway. The coordinated action of repressor and activator MYBs could be important for the fine tuning of proanthocyanidin biosynthesis during development or following stress.
引用
收藏
页码:949 / 965
页数:17
相关论文
共 50 条
  • [31] Characterization of two tartary buckwheat R2R3-MYB transcription factors and their regulation of proanthocyanidin biosynthesis
    Bai, Yue-Chen
    Li, Cheng-Lei
    Zhang, Jin-Wen
    Li, Shuang-Jiang
    Luo, Xiao-Peng
    Yao, Hui-Peng
    Chen, Hui
    Zhao, Hai-Xia
    Park, Sang-Un
    Wu, Qi
    PHYSIOLOGIA PLANTARUM, 2014, 152 (03) : 431 - 440
  • [32] PtoMYB142, a poplar R2R3-MYB transcription factor, contributes to drought tolerance by regulating wax biosynthesis
    Song, Qin
    Kong, Lingfei
    Yang, Xuerui
    Jiao, Bo
    Hu, Jian
    Zhang, Zhichao
    Xu, Changzheng
    Luo, Keming
    TREE PHYSIOLOGY, 2022, 42 (10) : 2133 - 2147
  • [33] Isolation and molecular analysis of two R2R3-MYB genes from the sunflower (Helianthus annuus)
    Pugliesi, Claudio
    Salvini, Mariangela
    Fambrini, Marco
    BOTANY, 2013, 91 (10) : 731 - 738
  • [34] Functional Characterization of a Novel R2R3-MYB Transcription Factor Modulating the Flavonoid Biosynthetic Pathway from Epimedium sagittatum
    Huang, Wenjun
    Lv, Haiyan
    Wang, Ying
    FRONTIERS IN PLANT SCIENCE, 2017, 8
  • [35] Identification and Phylogenetic Analysis of the R2R3-MYB Subfamily in Brassica napus
    Luo, Dingfan
    Mei, Desheng
    Wei, Wenliang
    Liu, Jia
    PLANTS-BASEL, 2023, 12 (04):
  • [36] Diversification of R2R3-MYB Transcription Factors in the Tomato Family Solanaceae
    Daniel J. Gates
    Susan R. Strickler
    Lukas A. Mueller
    Bradley J. S. C. Olson
    Stacey D. Smith
    Journal of Molecular Evolution, 2016, 83 : 26 - 37
  • [37] Characterization, expression and phylogenetic study of R2R3-MYB genes in orchid
    Xue-Min Wu
    Saw-Hoon Lim
    Wei-Cai Yang
    Plant Molecular Biology, 2003, 51 : 959 - 972
  • [38] Expansion and Diversification of the Populus R2R3-MYB Family of Transcription Factors
    Wilkins, Olivia
    Nahal, Hardeep
    Foong, Justin
    Provart, Nicholas J.
    Campbell, Malcolm M.
    PLANT PHYSIOLOGY, 2009, 149 (02) : 981 - 993
  • [39] Characterization and Divergence Analysis of Duplicated R2R3-MYB Genes in Watermelon
    Wang, Jin
    Liu, Yue
    Chen, Xueliang
    Kong, Qiusheng
    JOURNAL OF THE AMERICAN SOCIETY FOR HORTICULTURAL SCIENCE, 2020, 145 (05) : 281 - +
  • [40] Evolution and functional diversification of R2R3-MYB transcription factors in plants
    Wu, Yun
    Wen, Jing
    Xia, Yiping
    Zhang, Liangsheng
    Du, Hai
    HORTICULTURE RESEARCH, 2022, 9