Two R2R3-MYB proteins are broad repressors of flavonoid and phenylpropanoid metabolism in poplar

被引:160
|
作者
Ma, Dawei [1 ,2 ]
Reichelt, Michael [3 ]
Yoshida, Kazuko [1 ,2 ]
Gershenzon, Jonathan [3 ]
Constabel, C. Peter [1 ,2 ]
机构
[1] Univ Victoria, Ctr Forest Biol, 3800 Finnerty Rd, Victoria, BC V8P 5C2, Canada
[2] Univ Victoria, Dept Biol, 3800 Finnerty Rd, Victoria, BC V8P 5C2, Canada
[3] Max Planck Inst Chem Ecol, Dept Biochem, Hans Knoll Str 8, D-07745 Jena, Germany
基金
加拿大自然科学与工程研究理事会;
关键词
transcriptional repressor; gene regulatory network; plant secondary metabolism; phenolic metabolism; Populus tremula x tremuloides; MYB TRANSCRIPTION FACTOR; REGULATES PROANTHOCYANIDIN SYNTHESIS; ANTHOCYANIN BIOSYNTHESIS; FUNCTIONAL-CHARACTERIZATION; POPULUS-TRICHOCARPA; GENE ENCODES; ARABIDOPSIS; EXPRESSION; GRAPEVINE; PATHWAY;
D O I
10.1111/tpj.14081
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
The phenylpropanoid pathway leads to the production of many important plant secondary metabolites including lignin, chlorogenic acids, flavonoids, and phenolic glycosides. Early studies have demonstrated that flavonoid biosynthesis is transcriptionally regulated, often by a MYB, bHLH, and WDR transcription factor complex. In poplar, several R2R3 MYB transcription factors are known to be involved in flavonoid biosynthesis. Previous work determined that poplar MYB134 and MYB115 are major activators of the proanthocyanidin pathway, and also induce the expression of repressor-like MYB transcription factors. Here we characterize two new repressor MYBs, poplar MYB165 and MYB194, paralogs which comprise a subgroup of R2R3-MYBs distinct from previously reported poplar repressors. Both MYB165 and MYB194 repressed the activation of flavonoid promoters by MYB134 in transient activation assays, and both interacted with a co-expressed bHLH transcription factor, bHLH131, in yeast two-hybrid assays. Overexpression of MYB165 and MYB194 in hybrid poplar resulted in greatly reduced accumulation of several phenylpropanoids including anthocyanins, proanthocyanidins, phenolic glycosides, and hydroxycinnamic acid esters. Transcriptome analysis of MYB165- and MYB194-overexpressing poplars confirmed repression of many phenylpropanoid enzyme genes. In addition, other MYB genes as well as several shikimate pathway enzyme genes were downregulated by MYB165-overexpression. By contrast, leaf aromatic amino acid concentrations were greater in MYB165-overexpressing poplars. Our findings indicate that MYB165 is a major repressor of the flavonoid and phenylpropanoid pathway in poplar, and may also affect the shikimate pathway. The coordinated action of repressor and activator MYBs could be important for the fine tuning of proanthocyanidin biosynthesis during development or following stress.
引用
收藏
页码:949 / 965
页数:17
相关论文
共 50 条
  • [21] Characterization of two tartary buckwheat R2R3-MYB transcription factors and their regulation of proanthocyanidin biosynthesis
    Bai, Yue-Chen
    Li, Cheng-Lei
    Zhang, Jin-Wen
    Li, Shuang-Jiang
    Luo, Xiao-Peng
    Yao, Hui-Peng
    Chen, Hui
    Zhao, Hai-Xia
    Park, Sang-Un
    Wu, Qi
    PHYSIOLOGIA PLANTARUM, 2014, 152 (03) : 431 - 440
  • [22] PtoMYB142, a poplar R2R3-MYB transcription factor, contributes to drought tolerance by regulating wax biosynthesis
    Song, Qin
    Kong, Lingfei
    Yang, Xuerui
    Jiao, Bo
    Hu, Jian
    Zhang, Zhichao
    Xu, Changzheng
    Luo, Keming
    TREE PHYSIOLOGY, 2022, 42 (10) : 2133 - 2147
  • [23] Isolation and molecular analysis of two R2R3-MYB genes from the sunflower (Helianthus annuus)
    Pugliesi, Claudio
    Salvini, Mariangela
    Fambrini, Marco
    BOTANY, 2013, 91 (10) : 731 - 738
  • [24] Systematic analysis of the R2R3-MYB transcription factor gene family in Stevia rebaudiana
    Xu, Xiaoyang
    Yang, Yongheng
    Zhang, Ting
    Zhang, Yongxia
    Tong, Haiying
    Yuan, Haiyan
    INDUSTRIAL CROPS AND PRODUCTS, 2024, 210
  • [25] Biosynthesis of riccionidins and marchantins is regulated by R2R3-MYB transcription factors in Marchantia polymorpha
    Kubo, Hiroyoshi
    Nozawa, Shunsuke
    Hiwatashi, Takuma
    Kondou, Youichi
    Nakabayashi, Ryo
    Mori, Tetsuya
    Saito, Kazuki
    Takanashi, Kojiro
    Kohchi, Takayuki
    Ishizaki, Kimitsune
    JOURNAL OF PLANT RESEARCH, 2018, 131 (05) : 849 - 864
  • [26] The Pea R2R3-MYB Gene Family and Its Role in Anthocyanin Biosynthesis in Flowers
    Yang, Yating
    Yuan, Zhuo
    Ning, Conghui
    Zhao, Baoling
    Wang, Ruoruo
    Zheng, Xiaoling
    Liu, Yu
    Chen, Jianghua
    He, Liangliang
    FRONTIERS IN GENETICS, 2022, 13
  • [27] R2R3-MYB Transcription Factors Regulate Anthocyanin Biosynthesis in Grapevine Vegetative Tissues
    Xie, Sha
    Lei, Yujuan
    Chen, Huawei
    Li, Junnan
    Chen, Huangzhao
    Zhang, Zhenwen
    FRONTIERS IN PLANT SCIENCE, 2020, 11
  • [28] The potential role of R2R3-MYB gene family in the phenylpropanoid pathway and regulatory mechanism in Fragaria x ananassa
    Jia, R.
    Ma, C. L.
    Jiang, X. W.
    Li, H. Q.
    BIOLOGIA PLANTARUM, 2023, 67 : 249 - 261
  • [29] The R2R3-MYB transcription factor VcMYB4a inhibits lignin biosynthesis in blueberry (Vaccinium corymbosum)
    Yang, Bofei
    Li, Yuening
    Song, Yan
    Wang, Xianglong
    Guo, Qingxun
    Zhou, Lianxia
    Xue, Xue
    Zhang, Chunyu
    TREE GENETICS & GENOMES, 2022, 18 (03)
  • [30] Tartary Buckwheat FtMYB31 Gene Encoding an R2R3-MYB Transcription Factor Enhances Flavonoid Accumulation in Tobacco
    Sun, Zhaoxia
    Linghu, Bin
    Hou, Siyu
    Liu, Ronghua
    Wang, Li
    Hao, Yanrong
    Han, Yuanhuai
    Zhou, Meiliang
    Liu, Longlong
    Li, Hongying
    JOURNAL OF PLANT GROWTH REGULATION, 2020, 39 (02) : 564 - 574