Unraveling the morphology effect of kandite supporting MoS2 nanosheets for enhancing electrocatalytic hydrogen evolution

被引:20
|
作者
Peng, Kang [1 ]
Wan, Pengfei [1 ]
Wang, Hongjie [1 ]
Zuo, Linjie [1 ]
Niu, Min [1 ]
Su, Lei [1 ]
Zhuang, Lei [1 ]
Li, Xiaoyu [2 ]
机构
[1] Xi An Jiao Tong Univ, State Key Lab Mech Behav Mat, Xian 710049, Peoples R China
[2] Changan Univ, Sch Mat Sci & Engn, Xian 710064, Peoples R China
基金
中国国家自然科学基金;
关键词
Morphology effect; Clay; MoS2; Electrocatalysis; Hydrogen evolution; ACTIVE EDGE SITES; MOLYBDENUM SULFIDE; NANOPARTICLES; MICROSPHERES; PERFORMANCE; REDUCTION; NANOTUBES; CATALYSTS; RECOVERY; DESIGN;
D O I
10.1016/j.clay.2021.106211
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Recently, composite electrocatalysts integrating MoS2 nanosheets on supports have shown prospective electrochemical activity for the hydrogen evolution reaction (HER). The micro morphology of supports is one of vital factors to be considered for the design of composite electrocatalysts, and therefore the morphology effect of supports on the catalytic activity is necessary to be unraveled. Herein, MoS2 nanosheets were hydrothermally assembled on surfaces of kandite minerals with different morphologies of nanosheets, nanorods, and nanotubes, respectively. The composite electrocatalysts of kandite supporting MoS2 nanosheets exhibited excellent electrocatalytic activity for the HER, and the Tafel slope of MoS2 on kaolinite nanosheets (59 mV/dec) was lower than that on kaolinite nanorods and halloysite nanotubes. Kaolinite nanosheets presented superior morphology synergy with MoS2 nanosheets due to the similar two-dimensional structures. For one-dimensional supports, halloysite nanotubes had larger specific surface areas and the higher mass transport efficiency than kaolinite nanorods. This work provides novel insight into the role of support morphology played in the development of composite electrocatalysts for the HER.
引用
收藏
页数:8
相关论文
共 50 条
  • [1] Transition metal doped MoS2 nanosheets for electrocatalytic hydrogen evolution reaction
    Venkatesh, P. Sundara
    Kannan, N.
    Babu, M. Ganesh
    Paulraj, G.
    Jeganathan, K.
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2022, 47 (88) : 37256 - 37263
  • [2] Exfoliation of the defect-rich MoS2 nanosheets to obtain nanodots modified MoS2 thin nanosheets for electrocatalytic hydrogen evolution
    Qiangbin Yang
    Yi He
    Yi Fan
    Fei Li
    Xi Chen
    Journal of Materials Science: Materials in Electronics, 2017, 28 : 7413 - 7418
  • [3] Exfoliation of the defect-rich MoS2 nanosheets to obtain nanodots modified MoS2 thin nanosheets for electrocatalytic hydrogen evolution
    Yang, Qiangbin
    He, Yi
    Fan, Yi
    Li, Fei
    Chen, Xi
    JOURNAL OF MATERIALS SCIENCE-MATERIALS IN ELECTRONICS, 2017, 28 (10) : 7413 - 7418
  • [4] MoS2 confined on graphene by triethanolamine for enhancing electrocatalytic hydrogen evolution performance
    Yu, Chao
    Cao, Zhan-fang
    Yang, Fan
    Wang, Shuai
    Zhong, Hong
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2019, 44 (52) : 28151 - 28162
  • [5] Amorphous carbon supported MoS2 nanosheets as effective catalysts for electrocatalytic hydrogen evolution
    Zhao, Xue
    Zhua, Hui
    Yang, Xiurong
    NANOSCALE, 2014, 6 (18) : 10680 - 10685
  • [6] MoS2 nanosheets on Cu-foil for rapid electrocatalytic hydrogen evolution reaction
    Pataniya, Pratik M.
    Sumesh, C. K.
    JOURNAL OF ELECTROANALYTICAL CHEMISTRY, 2022, 912
  • [7] Hydrothermal synthesis of 2D MoS2 nanosheets for electrocatalytic hydrogen evolution reaction
    Muralikrishna, S.
    Manjunath, K.
    Samrat, D.
    Reddy, Viswanath
    Ramakrishnappa, T.
    Nagaraju, D. H.
    RSC ADVANCES, 2015, 5 (109) : 89389 - 89396
  • [8] Effect of Ni Doping on Electrocatalytic Hydrogen Evolution Activity of MoS2
    Wang, Congrong
    Wang, Shun
    Lv, Jianguo
    Ma, Yuxuan
    Zhou, Gaoliang
    Chen, Mingsheng
    Wang, Yongqi
    Zhao, Min
    Chen, Xiaoshuang
    INTERNATIONAL JOURNAL OF ELECTROCHEMICAL SCIENCE, 2019, 14 (12): : 11607 - 11615
  • [9] Field Effect Enhanced Hydrogen Evolution Reaction of MoS2 Nanosheets
    Wang, Junhui
    Yan, Mengyu
    Zhao, Kangning
    Liao, Xiaobin
    Wang, Peiyao
    Pan, Xuelei
    Yang, Wei
    Mai, Liqiang
    ADVANCED MATERIALS, 2017, 29 (07)
  • [10] Enhancing electrocatalytic hydrogen evolution via engineering unsaturated electronic structures in MoS2
    Zhou, Qingqing
    Hu, Hao
    Chen, Zhijie
    Ren, Xiao
    Ma, Ding
    CHEMICAL SCIENCE, 2025, 16 (04) : 1597 - 1616