Stability analysis for the virtual element method

被引:233
作者
da Veiga, Lourenco Beirao [1 ,2 ]
Lovadina, Carlo [2 ,3 ]
Russo, Alessandro [1 ,2 ]
机构
[1] Univ Milano Bicocca, Dipartimento Matemat & Applicaz, Via Cozzi 53, I-20125 Milan, Italy
[2] CNR, IMATI, Via Ferrata 1, I-27100 Pavia, Italy
[3] Univ Milan, Dipartimento Matemat, Via Saldini 50, I-20133 Milan, Italy
基金
欧洲研究理事会;
关键词
Virtual element methods; stability analysis; convergence analysis; FRACTURE NETWORK SIMULATIONS; LINEAR ELASTICITY PROBLEMS; POLYGONAL FINITE-ELEMENTS; POLYHEDRAL MESHES; ERROR;
D O I
10.1142/S021820251750052X
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We analyze the virtual element methods (VEM) on a simple elliptic model problem, allowing for more general meshes than the one typically considered in the VEM literature. For instance, meshes with arbitrarily small edges (with respect to the parent element diameter) can be dealt with. Our general approach applies to different choices of the stability form, including, for example, the "classical" one introduced in Ref. 4, and a recent one presented in Ref. 34. Finally, we show that the stabilization term can be simplified by dropping the contribution of the internal-to-the-element degrees of freedom. The resulting stabilization form, involving only the boundary degrees of freedom, can be used in the VEM scheme without affecting the stability and convergence properties. The numerical tests are in accordance with the theoretical predictions.
引用
收藏
页码:2557 / 2594
页数:38
相关论文
共 34 条
  • [21] GRADIENT SCHEMES: A GENERIC FRAMEWORK FOR THE DISCRETISATION OF LINEAR, NONLINEAR AND NONLOCAL ELLIPTIC AND PARABOLIC EQUATIONS
    Droniou, Jerome
    Eymard, Robert
    Gallouet, Thierry
    Herbin, Raphaele
    [J]. MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2013, 23 (13) : 2395 - 2432
  • [22] Centroidal Voronoi tessellations: Applications and algorithms
    Du, Q
    Faber, V
    Gunzburger, M
    [J]. SIAM REVIEW, 1999, 41 (04) : 637 - 676
  • [23] DUPONT T, 1980, MATH COMPUT, V34, P441, DOI 10.1090/S0025-5718-1980-0559195-7
  • [24] Topology optimization using polytopes
    Gain, Arun L.
    Paulino, Glaucio H.
    DuartE, Leonardo S.
    Menezes, Ivan F. M.
    [J]. COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2015, 293 : 411 - 430
  • [25] On the Virtual Element Method for three-dimensional linear elasticity problems on arbitrary polyhedral meshes
    Gain, Arun L.
    Talischi, Cameron
    Paulino, Glaucio H.
    [J]. COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2014, 282 : 132 - 160
  • [26] Grisvard P., 1992, Mathematiques et Applications, V22
  • [27] A virtual element method for the Steklov eigenvalue problem
    Mora, David
    Rivera, Gonzalo
    Rodriguez, Rodolfo
    [J]. MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2015, 25 (08) : 1421 - 1445
  • [28] A PLANE WAVE VIRTUAL ELEMENT METHOD FOR THE HELMHOLTZ PROBLEM
    Perugia, Ilaria
    Pietra, Paola
    Russo, Alessandro
    [J]. ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2016, 50 (03): : 783 - 808
  • [29] Interpolation error estimates for mean value coordinates over convex polygons
    Rand, Alexander
    Gillette, Andrew
    Bajaj, Chandrajit
    [J]. ADVANCES IN COMPUTATIONAL MATHEMATICS, 2013, 39 (02) : 327 - 347
  • [30] SOBOLEV S.L., 1964, PARTIAL DIFFERENTIAL