Stability analysis for the virtual element method

被引:242
作者
da Veiga, Lourenco Beirao [1 ,2 ]
Lovadina, Carlo [2 ,3 ]
Russo, Alessandro [1 ,2 ]
机构
[1] Univ Milano Bicocca, Dipartimento Matemat & Applicaz, Via Cozzi 53, I-20125 Milan, Italy
[2] CNR, IMATI, Via Ferrata 1, I-27100 Pavia, Italy
[3] Univ Milan, Dipartimento Matemat, Via Saldini 50, I-20133 Milan, Italy
基金
欧洲研究理事会;
关键词
Virtual element methods; stability analysis; convergence analysis; FRACTURE NETWORK SIMULATIONS; LINEAR ELASTICITY PROBLEMS; POLYGONAL FINITE-ELEMENTS; POLYHEDRAL MESHES; ERROR;
D O I
10.1142/S021820251750052X
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We analyze the virtual element methods (VEM) on a simple elliptic model problem, allowing for more general meshes than the one typically considered in the VEM literature. For instance, meshes with arbitrarily small edges (with respect to the parent element diameter) can be dealt with. Our general approach applies to different choices of the stability form, including, for example, the "classical" one introduced in Ref. 4, and a recent one presented in Ref. 34. Finally, we show that the stabilization term can be simplified by dropping the contribution of the internal-to-the-element degrees of freedom. The resulting stabilization form, involving only the boundary degrees of freedom, can be used in the VEM scheme without affecting the stability and convergence properties. The numerical tests are in accordance with the theoretical predictions.
引用
收藏
页码:2557 / 2594
页数:38
相关论文
共 34 条
[11]   A mixed virtual element method for the pseudostress-velocity formulation of the Stokes problem [J].
Caceres, Ernesto ;
Gatica, Gabriel N. .
IMA JOURNAL OF NUMERICAL ANALYSIS, 2017, 37 (01) :296-331
[12]   hp-Version discontinuous Galerkin methods on polygonal and polyhedral meshes [J].
Cangiani, Andrea ;
Georgoulis, Emmanuil H. ;
Houston, Paul .
MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2014, 24 (10) :2009-2041
[13]   Virtual Element Method for general second-order elliptic problems on polygonal meshes [J].
da Veiga, L. Beirao ;
Brezzi, F. ;
Marini, L. D. ;
Russo, A. .
MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2016, 26 (04) :729-750
[14]   A Virtual Element Method for elastic and inelastic problems on polytope meshes [J].
da Veiga, L. Beirao ;
Lovadina, C. ;
Mora, D. .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2015, 295 :327-346
[15]   The Hitchhiker's Guide to the Virtual Element Method [J].
da Veiga, L. Beirao ;
Brezzi, F. ;
Marini, L. D. ;
Russo, A. .
MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2014, 24 (08) :1541-1573
[16]   BASIC PRINCIPLES OF VIRTUAL ELEMENT METHODS [J].
da Veiga, L. Beirao ;
Brezzi, F. ;
Cangiani, A. ;
Manzini, G. ;
Marini, L. D. ;
Russo, A. .
MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2013, 23 (01) :199-214
[17]   VIRTUAL ELEMENTS FOR LINEAR ELASTICITY PROBLEMS [J].
da Veiga, L. Beirao ;
Brezzi, F. ;
Marini, L. D. .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2013, 51 (02) :794-812
[18]  
da Veiga L. Beirao, ARXIV160705988
[19]   DIVERGENCE FREE VIRTUAL ELEMENTS FOR THE STOKES PROBLEM ON POLYGONAL MESHES [J].
da Veiga, Lourenco Beirao ;
Lovadina, Carlo ;
Vacca, Giuseppe .
ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2017, 51 (02) :509-535
[20]   A hybrid high-order locking-free method for linear elasticity on general meshes [J].
Di Pietro, Daniele A. ;
Ern, Alexandre .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2015, 283 :1-21