Stability analysis for the virtual element method

被引:242
作者
da Veiga, Lourenco Beirao [1 ,2 ]
Lovadina, Carlo [2 ,3 ]
Russo, Alessandro [1 ,2 ]
机构
[1] Univ Milano Bicocca, Dipartimento Matemat & Applicaz, Via Cozzi 53, I-20125 Milan, Italy
[2] CNR, IMATI, Via Ferrata 1, I-27100 Pavia, Italy
[3] Univ Milan, Dipartimento Matemat, Via Saldini 50, I-20133 Milan, Italy
基金
欧洲研究理事会;
关键词
Virtual element methods; stability analysis; convergence analysis; FRACTURE NETWORK SIMULATIONS; LINEAR ELASTICITY PROBLEMS; POLYGONAL FINITE-ELEMENTS; POLYHEDRAL MESHES; ERROR;
D O I
10.1142/S021820251750052X
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We analyze the virtual element methods (VEM) on a simple elliptic model problem, allowing for more general meshes than the one typically considered in the VEM literature. For instance, meshes with arbitrarily small edges (with respect to the parent element diameter) can be dealt with. Our general approach applies to different choices of the stability form, including, for example, the "classical" one introduced in Ref. 4, and a recent one presented in Ref. 34. Finally, we show that the stabilization term can be simplified by dropping the contribution of the internal-to-the-element degrees of freedom. The resulting stabilization form, involving only the boundary degrees of freedom, can be used in the VEM scheme without affecting the stability and convergence properties. The numerical tests are in accordance with the theoretical predictions.
引用
收藏
页码:2557 / 2594
页数:38
相关论文
共 34 条
[1]   Equivalent projectors for virtual element methods [J].
Ahmad, B. ;
Alsaedi, A. ;
Brezzi, F. ;
Marini, L. D. ;
Russo, A. .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2013, 66 (03) :376-391
[2]  
[Anonymous], 1968, TRAVAUX RECHERCHES M
[3]  
Apel T., 1999, Advances in Numerical Mathematics
[4]  
Baiocchi C., 1984, VARIATIONAL QUASIVAR
[5]   A hybrid mortar virtual element method for discrete fracture network simulations [J].
Benedetto, Matias Fernando ;
Berrone, Stefano ;
Borio, Andrea ;
Pieraccini, Sandra ;
Scialo, Stefano .
JOURNAL OF COMPUTATIONAL PHYSICS, 2016, 306 :148-166
[6]   The virtual element method for discrete fracture network simulations [J].
Benedetto, Matias Fernando ;
Berrone, Stefano ;
Pieraccini, Sandra ;
Scialo, Stefano .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2014, 280 :135-156
[7]  
Bertoluzza S, 2004, MATH COMPUT, V73, P659, DOI 10.1090/S0025-5718-03-01550-3
[8]  
Brenner S. C., COMPUT METHODS APPL
[9]   BASIC PRINCIPLES OF MIXED VIRTUAL ELEMENT METHODS [J].
Brezzi, F. ;
Falk, Richard S. ;
Marini, L. Donatella .
ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2014, 48 (04) :1227-1240
[10]   Virtual Element Methods for plate bending problems [J].
Brezzi, Franco ;
Marini, L. Donatella .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2013, 253 :455-462