On the Mittag-Leffler Stability of Impulsive Fractional Solow-Type Models

被引:1
|
作者
Stamova, Ivanka M. [1 ]
Stamov, Gani Tr. [1 ]
机构
[1] Univ Texas San Antonio, Dept Math, One UTSA Circle, San Antonio, TX 78249 USA
关键词
Solow-type models; fractional derivatives; impulsive control; stability; DIFFERENTIAL-EQUATIONS; FINANCIAL-SYSTEM; GROWTH; EXISTENCE; ORDER; SYNCHRONIZATION; POPULATION; DYNAMICS; DELAY;
D O I
10.1515/ijnsns-2016-0027
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
In this article, we introduce fractional-order Solow-type models as a new tool for modeling and analysis in mathematical finance. Sufficient conditions for the Mittag-Leffler stability of their states are derived. The main advantages of the proposed approach are using of fractional-order derivatives, whose nonlocal property makes the fractional calculus a suitable tool for modeling actual financial systems as well as using of impulsive perturbations which give an opportunity to control the dynamic behavior of the model. The modeling approach proposed in this article can be applied to investigate macroeconomic systems.
引用
收藏
页码:315 / 325
页数:11
相关论文
共 50 条
  • [21] Mittag-Leffler stability of numerical solutions to time fractional ODEs
    Wang, Dongling
    Zou, Jun
    NUMERICAL ALGORITHMS, 2023, 92 (04) : 2125 - 2159
  • [22] Tempered Mittag-Leffler Stability of Tempered Fractional Dynamical Systems
    Deng, Jingwei
    Ma, Weiyuan
    Deng, Kaiying
    Li, Yingxing
    MATHEMATICAL PROBLEMS IN ENGINEERING, 2020, 2020
  • [23] Mittag-Leffler stability for a fractional Euler-Bernoulli problem
    Tatar, Nasser-eddine
    CHAOS SOLITONS & FRACTALS, 2021, 149
  • [24] Mittag-Leffler stability and stabilization of ψ-caputo fractional homogeneous systems
    Omri, Faouzi
    Mabrouk, Fehmi
    RICERCHE DI MATEMATICA, 2025,
  • [25] Properties of ψ-Mittag-Leffler fractional integrals
    Oliveira, D. S.
    RENDICONTI DEL CIRCOLO MATEMATICO DI PALERMO, 2022, 71 (01) : 233 - 246
  • [26] Mittag-Leffler Stability for Non-instantaneous Impulsive Generalized Proportional Caputo Fractional Differential Equations
    Hristova, Snezhana
    NEW TRENDS IN THE APPLICATIONS OF DIFFERENTIAL EQUATIONS IN SCIENCES, NTADES 2023, 2024, 449 : 209 - 219
  • [27] Mittag-Leffler stability analysis on variable-time impulsive fractional-order neural networks
    Yang, Xujun
    Li, Chuandong
    Song, Qiankun
    Huang, Tingwen
    Chen, Xiaofeng
    NEUROCOMPUTING, 2016, 207 : 276 - 286
  • [28] Mittag-Leffler stability of random-order fractional nonlinear uncertain dynamic systems with impulsive effects
    Phu, Nguyen Dinh
    Hoa, Ngo Van
    NONLINEAR DYNAMICS, 2023, 111 (10) : 9409 - 9430
  • [29] Mittag-Leffler stability of random-order fractional nonlinear uncertain dynamic systems with impulsive effects
    Nguyen Dinh Phu
    Ngo Van Hoa
    Nonlinear Dynamics, 2023, 111 : 9409 - 9430
  • [30] AN ANALYTICAL STUDY OF FRACTIONAL DELAY IMPULSIVE IMPLICIT SYSTEMS WITH MITTAG-LEFFLER LAW
    Abdeljawad, Thabet
    Shah, Kamal
    Abdo, Mohammed S.
    Jarad, Fahd
    APPLIED AND COMPUTATIONAL MATHEMATICS, 2023, 22 (01) : 31 - 44