On the Mittag-Leffler Stability of Impulsive Fractional Solow-Type Models

被引:1
|
作者
Stamova, Ivanka M. [1 ]
Stamov, Gani Tr. [1 ]
机构
[1] Univ Texas San Antonio, Dept Math, One UTSA Circle, San Antonio, TX 78249 USA
关键词
Solow-type models; fractional derivatives; impulsive control; stability; DIFFERENTIAL-EQUATIONS; FINANCIAL-SYSTEM; GROWTH; EXISTENCE; ORDER; SYNCHRONIZATION; POPULATION; DYNAMICS; DELAY;
D O I
10.1515/ijnsns-2016-0027
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
In this article, we introduce fractional-order Solow-type models as a new tool for modeling and analysis in mathematical finance. Sufficient conditions for the Mittag-Leffler stability of their states are derived. The main advantages of the proposed approach are using of fractional-order derivatives, whose nonlocal property makes the fractional calculus a suitable tool for modeling actual financial systems as well as using of impulsive perturbations which give an opportunity to control the dynamic behavior of the model. The modeling approach proposed in this article can be applied to investigate macroeconomic systems.
引用
收藏
页码:315 / 325
页数:11
相关论文
共 50 条
  • [1] Mittag-Leffler Stability for Impulsive Caputo Fractional Differential Equations
    Agarwal, R.
    Hristova, S.
    O'Regan, D.
    DIFFERENTIAL EQUATIONS AND DYNAMICAL SYSTEMS, 2021, 29 (03) : 689 - 705
  • [2] MITTAG-LEFFLER STABILITY OF IMPULSIVE DIFFERENTIAL EQUATIONS OF FRACTIONAL ORDER
    Stamova, Ivanka M.
    QUARTERLY OF APPLIED MATHEMATICS, 2015, 73 (03) : 525 - 535
  • [3] Mittag-Leffler stability and generalized Mittag-Leffler stability of fractional-order gene regulatory networks
    Ren, Fengli
    Cao, Feng
    Cao, Jinde
    NEUROCOMPUTING, 2015, 160 : 185 - 190
  • [4] Globally β-Mittag-Leffler stability and β-Mittag-Leffler convergence in Lagrange sense for impulsive fractional-order complex-valued neural networks
    Li, Hui
    Kao, Yonggui
    Li, Hong-Li
    CHAOS SOLITONS & FRACTALS, 2021, 148
  • [5] Mittag-Leffler Stability of Impulsive Nonlinear Fractional-Order Systems with Time Delays
    Mathiyalagan, K.
    Ma, Yong-Ki
    IRANIAN JOURNAL OF SCIENCE, 2023, 47 (01) : 99 - 108
  • [6] ON FRACTIONAL MITTAG-LEFFLER OPERATORS
    Ansari, Alireza
    Darani, Mohammadreza Ahmadi
    Moradi, Mohammad
    REPORTS ON MATHEMATICAL PHYSICS, 2012, 70 (01) : 119 - 131
  • [7] Mittag-Leffler stability for a fractional viscoelastic telegraph problem
    Tatar, Nasser-eddine
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2021, 44 (18) : 14184 - 14205
  • [8] On Mittag-Leffler Stability of Fractional Order Difference Systems
    Wyrwas, Malgorzata
    Mozyrska, Dorota
    ADVANCES IN MODELLING AND CONTROL OF NON-INTEGER ORDER SYSTEMS, 2015, 320 : 209 - 220
  • [9] Constructive fractional models through Mittag-Leffler functions
    Monteiro, Noemi Zeraick
    dos Santos, Rodrigo Weber
    Mazorche, Sandro Rodrigues
    COMPUTATIONAL & APPLIED MATHEMATICS, 2024, 43 (04):
  • [10] Fractional integrals and derivatives of Mittag-Leffler type functions
    Kilbas, AA
    Saigo, M
    DOKLADY AKADEMII NAUK BELARUSI, 1995, 39 (04): : 22 - 26