Strongly clean matrix rings over commutative local rings

被引:46
作者
Borooah, Gautam
Diesl, Alexander J.
Dorsey, Thomas J.
机构
[1] Ctr Commun Res, San Diego, CA 92121 USA
[2] Univ Calif Berkeley, Dept Math, Berkeley, CA 94720 USA
[3] Vassar Coll, Dept Math, Poughkeepsie, NY 12604 USA
关键词
D O I
10.1016/j.jpaa.2007.05.020
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We will completely characterize the commutative local rings for which M-n (R) is strongly clean, in terms of factorization in R[t]. We also obtain similar elementwise results which show additionally that for any monic polynomial f is an element of R[t], the strong cleanness of the companion matrix of f is equivalent to the strong cleanness of all matrices with characteristic polynomial f. (C) 2007 Elsevier B.V. All rights reserved.
引用
收藏
页码:281 / 296
页数:16
相关论文
共 26 条
[1]  
[Anonymous], GRADUATE TEXTS MATH
[2]   INJECTIVE AND SUBJECTIVE ENDOMORPHISMS OF FINITELY GENERATED MODULES [J].
ARMENDARIZ, EP ;
FISHER, JW ;
SNIDER, RL .
COMMUNICATIONS IN ALGEBRA, 1978, 6 (07) :659-672
[3]   Strongly clean triangular matrix rings over local rings [J].
Borooah, Gautam ;
Diesl, Alexander J. ;
Dorsey, Thomas J. .
JOURNAL OF ALGEBRA, 2007, 312 (02) :773-797
[4]  
Borooah Gautam, 2005, THESIS U CALIFORNIA
[5]  
BOURBAKI N., 1998, Elements of Mathematics
[6]   Continuous modules are clean [J].
Camillo, V. P. ;
Khurana, D. ;
Lam, T. Y. ;
Nicholson, W. K. ;
Zhou, Y. .
JOURNAL OF ALGEBRA, 2006, 304 (01) :94-111
[7]   EXCHANGE RINGS, UNITS AND IDEMPOTENTS [J].
CAMILLO, VP ;
YU, HP .
COMMUNICATIONS IN ALGEBRA, 1994, 22 (12) :4737-4749
[8]  
Cedó F, 1998, ISRAEL J MATH, V107, P343, DOI 10.1007/BF02764018
[9]   On strongly clean matrix and triangular matrix rings [J].
Chen, Jianlong ;
Yang, Xiande ;
Zhou, Yiqiang .
COMMUNICATIONS IN ALGEBRA, 2006, 34 (10) :3659-3674
[10]   When is the 2 x 2 matrix ring over a commutative local ring strongly clean? [J].
Chen, Jianlong ;
Yang, Xiande ;
Zhou, Yiqiang .
JOURNAL OF ALGEBRA, 2006, 301 (01) :280-293