Characterizing dynamics with covariant Lyapunov vectors

被引:213
作者
Ginelli, F. [1 ]
Poggi, P.
Turchi, A.
Chate, H.
Livi, R.
Politi, A.
机构
[1] CEA Saclay, Serv Phys Etat Condense, F-91191 Gif Sur Yvette, France
[2] Univ Florence, Dipartimento Fis, Ist Nazl Fis Nucl, I-50019 Sesto Fiorentino, Italy
[3] Univ Florence, CSDC, I-50019 Sesto Fiorentino, Italy
[4] CNR, ISC, I-50019 Sesto Fiorentino, Italy
关键词
D O I
10.1103/PhysRevLett.99.130601
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
A general method to determine covariant Lyapunov vectors in both discrete- and continuous-time dynamical systems is introduced. This allows us to address fundamental questions such as the degree of hyperbolicity, which can be quantified in terms of the transversality of these intrinsic vectors. For spatially extended systems, the covariant Lyapunov vectors have localization properties and spatial Fourier spectra qualitatively different from those composing the orthonormalized basis obtained in the standard procedure used to calculate the Lyapunov exponents.
引用
收藏
页数:4
相关论文
共 26 条
[1]  
Benettin G., 1980, Meccanica, V15, P21, DOI [DOI 10.1007/BF02128237, 10.1007/BF02128237]
[2]   Uniform (projective) hyperbolicity or no hyperbolicity: A dichotomy for generic conservative maps [J].
Bochi, J ;
Viana, M .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2002, 19 (01) :113-123
[3]   LYAPUNOV ANALYSIS OF SPATIOTEMPORAL INTERMITTENCY [J].
CHATE, H .
EUROPHYSICS LETTERS, 1993, 21 (04) :419-425
[4]   ERGODIC PROPERTIES OF THE LOZI MAPPINGS [J].
COLLET, P ;
LEVY, Y .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1984, 93 (04) :461-481
[5]   Noise-induced macroscopic bifurcations in globally coupled chaotic units -: art. no. 254101 [J].
De Monte, S ;
d'Ovidio, F ;
Chaté, H ;
Mosekilde, E .
PHYSICAL REVIEW LETTERS, 2004, 92 (25) :254101-1
[6]   LOCAL LYAPUNOV EXPONENTS IN CHAOTIC SYSTEMS [J].
ECKHARDT, B ;
YAO, DM .
PHYSICA D, 1993, 65 (1-2) :100-108
[7]   Lyapunov modes in hard-disk systems [J].
Eckmann, JP ;
Forster, C ;
Posch, HA ;
Zabey, E .
JOURNAL OF STATISTICAL PHYSICS, 2005, 118 (5-6) :813-847
[8]   ERGODIC-THEORY OF CHAOS AND STRANGE ATTRACTORS [J].
ECKMANN, JP ;
RUELLE, D .
REVIEWS OF MODERN PHYSICS, 1985, 57 (03) :617-656
[9]   Mechanisms of extensive spatiotemporal chaos in Rayleigh-Bernard convection [J].
Egolf, DA ;
Melnikov, IV ;
Pesch, W ;
Ecke, RE .
NATURE, 2000, 404 (6779) :733-736
[10]   On the concept of stationary Lyapunov basis [J].
Ershov, SV ;
Potapov, AB .
PHYSICA D, 1998, 118 (3-4) :167-198