Preperiodic points of polynomials over global fields

被引:18
作者
Benedetto, Robert L. [1 ]
机构
[1] Amherst Coll, Dept Math & Comp Sci, Amherst, MA 01002 USA
来源
JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK | 2007年 / 608卷
关键词
D O I
10.1515/CRELLE.2007.055
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Given a global field K and a polynomial phi defined over K of degree at least two, Morton and Silverman conjectured in 1994 that the number of K-rational preperiodic points of phi is bounded in terms of only the degree of K and the degree of phi. In 1997, for quadratic polynomials over K = Q, Call and Goldstine proved a bound which was exponential in s, the number of primes of bad reduction of phi. By careful analysis of the filled Julia sets at each prime, we present an improved bound on the order of slogs. Our bound applies to polynomials of any degree (at least two) over any global field K.
引用
收藏
页码:123 / 153
页数:31
相关论文
共 23 条