Preperiodic points of polynomials over global fields

被引:19
作者
Benedetto, Robert L. [1 ]
机构
[1] Amherst Coll, Dept Math & Comp Sci, Amherst, MA 01002 USA
来源
JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK | 2007年 / 608卷
关键词
D O I
10.1515/CRELLE.2007.055
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Given a global field K and a polynomial phi defined over K of degree at least two, Morton and Silverman conjectured in 1994 that the number of K-rational preperiodic points of phi is bounded in terms of only the degree of K and the degree of phi. In 1997, for quadratic polynomials over K = Q, Call and Goldstine proved a bound which was exponential in s, the number of primes of bad reduction of phi. By careful analysis of the filled Julia sets at each prime, we present an improved bound on the order of slogs. Our bound applies to polynomials of any degree (at least two) over any global field K.
引用
收藏
页码:123 / 153
页数:31
相关论文
共 23 条
[1]  
Baker MH, 2005, J REINE ANGEW MATH, V585, P61
[2]   Non-archimedean holomorphic maps and the Ahlfors islands theorem [J].
Benedetto, RL .
AMERICAN JOURNAL OF MATHEMATICS, 2003, 125 (03) :581-622
[3]   Components and periodic points in non-archimedean dynamics [J].
Benedetto, RL .
PROCEEDINGS OF THE LONDON MATHEMATICAL SOCIETY, 2002, 84 :231-256
[4]   Reduction, dynamics, and Julia sets of rational functions [J].
Benedetto, RL .
JOURNAL OF NUMBER THEORY, 2001, 86 (02) :175-195
[5]   On periodic points of rational applications in ultrametric dynamics [J].
Bézivin, JP .
ACTA ARITHMETICA, 2001, 100 (01) :63-74
[6]   Canonical heights on projective space [J].
Call, GS ;
Goldstine, SW .
JOURNAL OF NUMBER THEORY, 1997, 63 (02) :211-243
[7]   Boundedness results for periodic points on algebraic varieties [J].
Fakhruddin, N .
PROCEEDINGS OF THE INDIAN ACADEMY OF SCIENCES-MATHEMATICAL SCIENCES, 2001, 111 (02) :173-178
[8]  
FAKHRUDDIN N, 2003, J RAMANUJAN MATH SOC, V18
[9]   Cycles of quadratic polynomials and rational points on a genus-2 curve [J].
Flynn, EV ;
Poonen, B ;
Schaefer, EF .
DUKE MATHEMATICAL JOURNAL, 1997, 90 (03) :435-463
[10]   The least common multiple and lattice points on hyperbolas [J].
Granville, A ;
Jiménez-Urroz, J .
QUARTERLY JOURNAL OF MATHEMATICS, 2000, 51 :343-352