Image Restoration and Reconstruction using Targeted Plug-and-Play Priors

被引:27
作者
Teodoro, Afonso M. [1 ,2 ]
Bioucas-Dias, Jose M. [1 ,2 ]
Figueiredo, Mario A. T. [1 ,2 ]
机构
[1] Univ Lisbon, Inst Telecomunicacoes, P-1049001 Lisbon, Portugal
[2] Univ Lisbon, Inst Super Tecn, P-1049001 Lisbon, Portugal
关键词
Image restoration; image reconstruction; Gaussian mixtures; ADMM; plug-and-play; class-adapted priors; SPARSE REPRESENTATION; K-SVD; ALGORITHM; REGULARIZATION; SEGMENTATION;
D O I
10.1109/TCI.2019.2914773
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Leveraging current state-of-the-art denoisers to tackle other inverse problems in imaging is a challenging task, which has recently been the topic of significant research effort. In this paper, we present several contributions to this research front, based on two fundamental building blocks: 1) the recently proposed plug-and-play framework, which allows combining iterative algorithms for imaging inverse problems with state-of-the-art image denoisers, used in black-box fashion; and 2) patch-based denoisers, using Gaussian mixture models (GMM). We exploit the adaptability of GMM to learn class-adapted denoisers, which opens the door to embedding a patch classification step in the algorithmic loop, yielding simultaneous restoration and semantic segmentation. We apply the proposed approach to several standard imaging inverse problems (deblurring, compressive sensing reconstruction, and super-resolution), obtaining results that are competitive with the state of the art.
引用
收藏
页码:675 / 686
页数:12
相关论文
共 50 条
  • [41] Plug-and-Play ADMM for MRI Reconstruction With Convex Nonconvex Sparse Regularization
    Li, Jincheng
    Li, Jinlan
    Xie, Zhaoyang
    Zou, Jian
    [J]. IEEE ACCESS, 2021, 9 : 148315 - 148324
  • [42] Boosting the Performance of Plug-and-Play Priors via Denoiser Scaling
    Xu, Xiaojian
    Liu, Jiaming
    Sun, Yu
    Wohlberg, Brendt
    Kamilov, Ulugbek S.
    [J]. 2020 54TH ASILOMAR CONFERENCE ON SIGNALS, SYSTEMS, AND COMPUTERS, 2020, : 1305 - 1312
  • [43] Plug-and-Play Unplugged: Optimization-Free Reconstruction Using Consensus Equilibrium
    Buzzard, Gregery T.
    Chan, Stanley H.
    Sreehari, Suhas
    Bouman, Charles A.
    [J]. SIAM JOURNAL ON IMAGING SCIENCES, 2018, 11 (03): : 2001 - 2020
  • [44] Deep plug-and-play priors for spectral snapshot compressive imaging
    Zheng, Siming
    Liu, Yang
    Meng, Ziyi
    Qiao, Mu
    Tong, Zhishen
    Yang, Xiaoyu
    Han, Shensheng
    Yuan, Xin
    [J]. PHOTONICS RESEARCH, 2021, 9 (02) : B18 - B29
  • [45] Plug-and-Play Quantum Adaptive Denoiser for Deconvolving Poisson Noisy Images
    Dutta, Sayantan
    Basarab, Adrian
    Georgeot, Bertrand
    Kouame, Denis
    [J]. IEEE ACCESS, 2021, 9 : 139771 - 139791
  • [46] CONVERGENT PLUG-AND-PLAY USING CONTRACTIVE DENOISERS
    Nair, Pravin
    Chaudhury, Kunal N.
    [J]. 2024 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING, ICASSP 2024, 2024, : 6910 - 6914
  • [47] On Plug-and-Play Regularization Using Linear Denoisers
    Gavaskar, Ruturaj G.
    Athalye, Chirayu D.
    Chaudhury, Kunal N.
    [J]. IEEE TRANSACTIONS ON IMAGE PROCESSING, 2021, 30 : 4802 - 4813
  • [48] Plug-and-Play Joint Image Deblurring and Detection
    Marrs, Corey
    Kathariya, Birendra
    Li, Zhu
    York, George
    [J]. 2023 IEEE 25TH INTERNATIONAL WORKSHOP ON MULTIMEDIA SIGNAL PROCESSING, MMSP, 2023,
  • [49] Plug-and-Play Priors for Multi-Shot Compressive Hyperspectral Imaging
    Xie, Ting
    Liu, Licheng
    Zhuang, Lina
    [J]. IEEE TRANSACTIONS ON IMAGE PROCESSING, 2023, 32 : 5326 - 5339
  • [50] A Plug-and-Play Priors Approach for Solving Nonlinear Imaging Inverse Problems
    Kamilov, Ulugbek S.
    Mansour, Hassan
    Wohlberg, Brendt
    [J]. IEEE SIGNAL PROCESSING LETTERS, 2017, 24 (12) : 1872 - 1876