The Coulomb interaction in van der Waals heterostructures

被引:31
作者
Huang, Le [1 ]
Zhong, MianZeng [2 ]
Deng, HuiXiong [2 ]
Li, Bo [4 ]
Wei, ZhongMing [2 ]
Li, JingBo [1 ,2 ]
Wei, SuHuai [3 ]
机构
[1] Guangdong Univ Technol, Sch Mat & Energy, Guangzhou 510006, Guangdong, Peoples R China
[2] Univ Chinese Acad Sci, Inst Semicond, State Key Lab Superlattices & Microstruct, Beijing 100083, Peoples R China
[3] Beijing Computat Sci Res Ctr, Beijing 100094, Peoples R China
[4] Hunan Univ, Sch Phys & Elect, Dept Appl Phys, Changsha 410082, Hunan, Peoples R China
基金
中国国家自然科学基金;
关键词
van der Waals heterostructures; gaint Stark effect; Coulomb interaction; charge transfer; TOTAL-ENERGY CALCULATIONS; BLACK PHOSPHORUS; BANDGAP;
D O I
10.1007/s11433-018-9294-4
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The giant Stark effect (GSE) in a set of van der Waals (vdW) heterostructures is studied using first-principles methods. A straightforward model based on quasi-Fermi levels is proposed to describe the influence of an external perpendicular electric field on both band gap and band edges. Although a general linear GSE is observed, which is induced by the almost linear variation of the band edges of each layer in the heterostructures, when vdW heterostructures is subjected to small electric fields the variation becomes nonlinear. This can be attributed to the band offsets-induced interlayer charge transfer and resulted intraand inter-layer Coulomb interactions. Our work, thus offers new insight into the mechanism of the nonlinear GSE in vdW heterostructures, which is important for the applications of vdW heterostructures on nanoelectronic devices.
引用
收藏
页数:6
相关论文
共 34 条
  • [21] Micrometer-Scale Ballistic Transport in Encapsulated Graphene at Room Temperature
    Mayorov, Alexander S.
    Gorbachev, Roman V.
    Morozov, Sergey V.
    Britnell, Liam
    Jalil, Rashid
    Ponomarenko, Leonid A.
    Blake, Peter
    Novoselov, Kostya S.
    Watanabe, Kenji
    Taniguchi, Takashi
    Geim, A. K.
    [J]. NANO LETTERS, 2011, 11 (06) : 2396 - 2399
  • [22] MONKHORST HJ, 1976, PHYS REV B, V13, P5188, DOI [10.1103/PhysRevB.13.5188, 10.1103/PhysRevB.16.1746]
  • [23] Electric field effect in atomically thin carbon films
    Novoselov, KS
    Geim, AK
    Morozov, SV
    Jiang, D
    Zhang, Y
    Dubonos, SV
    Grigorieva, IV
    Firsov, AA
    [J]. SCIENCE, 2004, 306 (5696) : 666 - 669
  • [24] van der Waals Heterostructure of Phosphorene and Graphene: Tuning the Schottky Barrier and Doping by Electrostatic Gating
    Padilha, J. E.
    Fazzio, A.
    da Silva, Antonio J. R.
    [J]. PHYSICAL REVIEW LETTERS, 2015, 114 (06)
  • [25] Energy gaps and Stark effect in boron nitride nanoribbons
    Park, Cheol-Hwan
    Louie, Steven G.
    [J]. NANO LETTERS, 2008, 8 (08) : 2200 - 2203
  • [26] Perdew JP, 1996, PHYS REV LETT, V77, P3865, DOI 10.1103/PhysRevLett.77.3865
  • [27] Tunable band gaps in bilayer transition-metal dichalcogenides
    Ramasubramaniam, Ashwin
    Naveh, Doron
    Towe, Elias
    [J]. PHYSICAL REVIEW B, 2011, 84 (20)
  • [28] Observation of long-lived interlayer excitons in monolayer MoSe2-WSe2 heterostructures
    Rivera, Pasqual
    Schaibley, John R.
    Jones, Aaron M.
    Ross, Jason S.
    Wu, Sanfeng
    Aivazian, Grant
    Klement, Philip
    Seyler, Kyle
    Clark, Genevieve
    Ghimire, Nirmal J.
    Yan, Jiaqiang
    Mandrus, D. G.
    Yao, Wang
    Xu, Xiaodong
    [J]. NATURE COMMUNICATIONS, 2015, 6
  • [29] Optical evidence of Stark effect in single-walled carbon nanotube transistors
    Takenobu, Taishi
    Murayama, Yuji
    Iwasa, Yoshihiro
    [J]. APPLIED PHYSICS LETTERS, 2006, 89 (26)
  • [30] Tuning transport performance in two-dimensional metal-organic framework semiconductors: Role of the metal d band
    Tang, Liang-Po
    Tang, Li-Ming
    Geng, Hua
    Yi, Yuan-Ping
    Wei, Zhongming
    Chen, Ke-Qiu
    Deng, Hui-Xiong
    [J]. APPLIED PHYSICS LETTERS, 2018, 112 (01)