Zeolitic imidazolate framework-derived nitrogen-doped porous carbons as high performance supercapacitor electrode materials

被引:283
|
作者
Zhong, Shan [1 ]
Zhan, Chuanxing [2 ]
Cao, Dapeng [1 ]
机构
[1] Beijing Univ Chem Technol, State Key Lab Organ Inorgan Composites, Beijing 100029, Peoples R China
[2] Nanchang Univ, Sch Mat Sci & Engn, Nanchang 330031, Peoples R China
关键词
METAL-ORGANIC FRAMEWORK; OXYGEN REDUCTION REACTION; HIGH-SURFACE-AREA; NANOPOROUS CARBONS; MESOPOROUS CARBON; ENERGY-STORAGE; NANOTUBES; GRAPHENE; POROSITY; ELECTROCATALYSTS;
D O I
10.1016/j.carbon.2014.12.064
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
A series of nitrogen-doped porous carbons are prepared from nitrogen-containing zeolitic imidazolate framework (ZIF) and additional carbon sources (including melamin, urea, xylitol and sucrose) via co-carbonization at T = 950 degrees C. Results indicate that macromolecular carbon sources, say, sucrose, can effectively protect the nitrogen loss from ZIF backbone owing to the pre-melting and polymerization of the sucrose adsorbed on the ZIP surface in the carbonization process, which makes the corresponding ZIP-derived porous Carbon-ZS have high nitrogen content and excellent capacitive performance. The specific capacitance of Carbon-ZS in 6 M KOH solution reaches 285.8 F g(-1) at a current density of 0.1 A g(-1) owing to its relatively high nitrogen content and proper hierarchical pore structure. In particular, the capacitance of Carbon-ZS is higher than previously reported IRMOF-derived carbon, ZIF-67-derived carbon and ZIF-8/furfuryl alcohol co-derived carbon. Besides high capacitance, moreover, Carbon-ZS also shows excellent cycling stability and good electric conductivity as electrode materials for electric double-layer capacitors. (C) 2014 Elsevier Ltd. All rights reserved.
引用
收藏
页码:51 / 59
页数:9
相关论文
共 50 条
  • [41] High performance aqueous supercapacitor based on nitrogen-doped coal-based activated carbon electrode materials
    Dong, Duo
    Zhang, Yongsheng
    Xiao, Yi
    Wang, Tao
    Wang, Jiawei
    Romero, Carlos E.
    Pan, Wei-ping
    JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2020, 580 : 77 - 87
  • [42] Tea-leaves based nitrogen-doped porous carbons for high-performance supercapacitors electrode
    Ma, Guofu
    Li, Jindan
    Sun, Kanjun
    Peng, Hui
    Feng, Enke
    Lei, Ziqiang
    JOURNAL OF SOLID STATE ELECTROCHEMISTRY, 2017, 21 (02) : 525 - 535
  • [43] Nitrogen-doped porous carbons through KOH activation with superior performance in supercapacitors
    Zhou, Min
    Pu, Fan
    Wang, Zhao
    Guan, Shiyou
    CARBON, 2014, 68 : 185 - 194
  • [44] Hierarchically porous nitrogen-doped carbon nanotubes derived from core-shell ZnO@zeolitic imidazolate framework nanorods for highly efficient oxygen reduction reactions
    Shi, Peng-Chao
    Yi, Jun-Dong
    Liu, Tao-Tao
    Li, Lan
    Zhang, Lin-Jie
    Sun, Chuan-Fu
    Wang, Yao-Bing
    Huang, Yuan-Biao
    Cao, Rong
    JOURNAL OF MATERIALS CHEMISTRY A, 2017, 5 (24) : 12322 - 12329
  • [45] Bimetallic zeolitic imidazolate framework-derived nitrogen-doped porous carbon-coated CoFe2O4 core-shell composite with high catalytic performance for peroxymonosulfate activation in Rhodamine B degradation
    Liang, Yu
    Li, Lihua
    Yang, Chunmeng
    Ma, Lu
    Mao, Weihui
    Yu, Hongmei
    JOURNAL OF ALLOYS AND COMPOUNDS, 2022, 907
  • [46] Structure controllable of cobalt/nitrogen-doped carbonaceous materials derived from zeolitic imidazolate frameworks with improved microwave absorption performance
    Wang, Yuhan
    Wang, Kaifeng
    Zheng, Qitan
    Chen, Haochang
    Li, Hua
    Yang, Lei
    Chen, Yujie
    Liu, Hezhou
    MATERIALS RESEARCH BULLETIN, 2023, 165
  • [47] Nitrogen-doped porous carbon derived from bimetallic zeolitic imidazolate frameworks for electrochemical Li+/Na+ storage
    Dong, Shuai
    Cui, Jiewu
    Yu, Dongbo
    Cao, Zhongnan
    Yu, Cuiping
    Zhang, Yong
    Wu, Yucheng
    JOURNAL OF SOLID STATE ELECTROCHEMISTRY, 2022, 26 (03) : 683 - 693
  • [48] Nitrogen-Doped Hierarchical Porous Carbon through One-Step Activation of Bean Curd for High-Performance Supercapacitor Electrode
    Li, Qiang
    Wu, Xiaozhong
    Zhao, Yi
    Miao, Zhichao
    Xing, Lingbao
    Zhou, Jin
    Zhao, Jinping
    Zhuo, Shuping
    CHEMELECTROCHEM, 2018, 5 (12): : 1606 - 1614
  • [49] Nitrogen-doped graphene/carbon nanohorns composite as a high-performance supercapacitor electrode
    Lin, Xiao-Qiang
    Wang, Wen-Dong
    Lu, Qiu-Feng
    Jin, Yan-Qiao
    Lin, Qilang
    Liu, Rui
    JOURNAL OF MATERIALS SCIENCE & TECHNOLOGY, 2017, 33 (11) : 1339 - 1345
  • [50] Nickel vanadate nitrogen-doped carbon nanocomposites for high-performance supercapacitor electrode
    Almotairy, Awatif Rashed Z.
    Al-Maswari, Basheer M.
    Alkanad, Khaled
    Lokanath, N. K.
    Radhika, R. T.
    Venkatesha, B. M.
    HELIYON, 2023, 9 (08)