A Multibeam Tapered Cylindrical Luneburg Lens

被引:15
|
作者
Mirmozafari, M. [1 ]
Tursunniyaz, M. [1 ]
Luyen, H. [1 ]
Booske, J. H. [1 ]
Behdad, N. [1 ]
机构
[1] Univ Wisconsin, Dept Elect & Comp Engn, Madison, WI 53706 USA
基金
美国国家科学基金会;
关键词
Lenses; Feeds; Antennas; Refractive index; Gain; Antenna feeds; Impedance; Lens antennas; Luneburg lens; multibeam antennas; wide scan angle; WAVE; TRANSFORMATION; ANTENNAS; DESIGN;
D O I
10.1109/TAP.2020.3048508
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
We present a cylindrical, multibeam, modified Luneburg lens antenna. The proposed antenna features low-profile, good impedance match, high gain, and wide angle scanning capability. We tapered the thickness of a dielectric disk along its radius to achieve the required refractive index profile of the lens in a nondispersive fashion. Seventeen dielectric-filled waveguide feeds, arranged circumferentially around the focal arc of the lens, provide almost invariant azimuthal scanning in the range of +/- 60 degrees from broadside direction. The lens and the interior of the waveguide feeds are made of the same dielectric material, offering a smooth impedance transition from the feed antenna to the lens. A prototype of the antenna was fabricated and characterized. Measured reflection coefficient is better than -10 dB from 14 to 16 GHz. The isolations between feeds remain higher than 24 dB over the entire operational frequency range. We measured a maximum antenna gain of 20.5 dB with only 1.5 dB gain loss near the maximum 60 degrees scanning angle. The proposed high-gain, multibeam antenna design can be used in a wide range of applications including automotive and surveillance radars.
引用
收藏
页码:5060 / 5065
页数:6
相关论文
共 50 条
  • [41] Luneburg lens in silicon photonics
    Di Falco, Andrea
    Kehr, Susanne C.
    Leonhardt, Ulf
    OPTICS EXPRESS, 2011, 19 (06): : 5156 - 5162
  • [42] A Sliced Spherical Luneburg Lens
    Rondineau, Sebastien
    Himdi, Mohamed
    Sorieux, Jacques
    IEEE ANTENNAS AND WIRELESS PROPAGATION LETTERS, 2003, 2 : 163 - 166
  • [43] Luneburg lens element for the SKA
    James, G
    Kot, J
    Parfitt, A
    Nikolic, N
    RADIO TELESCOPES, 2000, 4015 : 410 - 419
  • [44] A Luneburg Lens in Moving Coordinates
    Gladyshev, V. O.
    Tereshin, A. A.
    OPTICS AND SPECTROSCOPY, 2016, 120 (05) : 773 - 780
  • [45] Plasmonic metasurface Luneburg lens
    Garcia-Ortiz, C. E.
    Cortes, R.
    Gomez-Correa, J. E.
    Pisano, E.
    Fiutowski, J.
    Garcia-Ortiz, D. A.
    Ruiz-Cortes, V.
    Rubahn, H. -G.
    Coello, V.
    PHOTONICS RESEARCH, 2019, 7 (10) : 1112 - 1118
  • [46] 3D-printed cylindrical Luneburg lens antenna for millimeter-wave applications
    Liu, Pengfei
    Zhu, Xiao-Wei
    Zhang, Yan
    Li, Ji
    Jiang, Zhihao
    INTERNATIONAL JOURNAL OF RF AND MICROWAVE COMPUTER-AIDED ENGINEERING, 2020, 30 (01)
  • [47] A Luneburg lens in moving coordinates
    V. O. Gladyshev
    A. A. Tereshin
    Optics and Spectroscopy, 2016, 120 : 773 - 780
  • [48] Luneburg lens waveguide networks
    Mattheakis, M. M.
    Tsironis, G. P.
    Kovanis, V. I.
    JOURNAL OF OPTICS, 2012, 14 (11)
  • [49] Fractional Luneburg Lens Antenna
    Nikolic, Nasiha
    Hellicar, Andrew
    IEEE ANTENNAS AND PROPAGATION MAGAZINE, 2014, 56 (05) : 116 - 130
  • [50] A Luneburg Lens for the Terahertz Region
    Yasith Amarasinghe
    Daniel M. Mittleman
    Rajind Mendis
    Journal of Infrared, Millimeter, and Terahertz Waves, 2019, 40 : 1129 - 1136