Dark Kinetic Heating of Neutron Stars and an Infrared Window on WIMPs, SIMPs, and Pure Higgsinos

被引:148
作者
Baryakhtar, Masha [1 ]
Bramante, Joseph [1 ]
Li, Shirley Weishi [2 ,3 ]
Linden, Tim [2 ,3 ]
Raj, Nirmal [4 ]
机构
[1] Perimeter Inst Theoret Phys, Waterloo, ON N2L 2Y5, Canada
[2] Ohio State Univ, CCAPP, Columbus, OH 43210 USA
[3] Ohio State Univ, Dept Phys, 174 W 18th Ave, Columbus, OH 43210 USA
[4] Univ Notre Dame, Dept Phys, Notre Dame, IN 46556 USA
基金
美国国家科学基金会;
关键词
EQUATION-OF-STATE; SUPERSYMMETRY; CAPTURE; GAS;
D O I
10.1103/PhysRevLett.119.131801
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We identify a largely model-independent signature of dark matter (DM) interactions with nucleons and electrons. DM in the local galactic halo, gravitationally accelerated to over half the speed of light, scatters against and deposits kinetic energy into neutron stars, heating them to infrared blackbody temperatures. The resulting radiation could potentially be detected by the James Webb Space Telescope, the Thirty Meter Telescope, or the European Extremely Large Telescope. This mechanism also produces optical emission from neutron stars in the galactic bulge, and x-ray emission near the galactic center because dark matter is denser in these regions. For GeV-PeV mass dark matter, dark kinetic heating would initially unmask any spin-independent or spin-dependent dark matter-nucleon cross sections exceeding 2 x 10(-45) cm(2), with improved sensitivity after more telescope exposure. For lighter-than-GeV dark matter, cross-section sensitivity scales inversely with dark matter mass because of Pauli blocking; for heavier-than-PeV dark matter, it scales linearly with mass as a result of needing multiple scatters for capture. Future observations of dark sector-warmed neutron stars could determine whether dark matter annihilates in or only kinetically heats neutron stars. Because inelastic interstate transitions of up to a few GeV would occur in relativistic scattering against nucleons, elusive inelastic dark matter like pure Higgsinos can also be discovered.
引用
收藏
页数:7
相关论文
共 66 条
[1]   Search for Low-Mass Weakly Interacting Massive Particles with SuperCDMS [J].
Agnese, R. ;
Anderson, A. J. ;
Asai, M. ;
Balakishiyeva, D. ;
Thakur, R. Basu ;
Bauer, D. A. ;
Beaty, J. ;
Billard, J. ;
Borgland, A. ;
Bowles, M. A. ;
Brandt, D. ;
Brink, P. L. ;
Bunker, R. ;
Cabrera, B. ;
Caldwell, D. O. ;
Cerdeno, D. G. ;
Chagani, H. ;
Chen, Y. ;
Cherry, M. ;
Cooley, J. ;
Cornell, B. ;
Crewdson, C. H. ;
Cushman, P. ;
Daal, M. ;
DeVaney, D. ;
Di Stefano, P. C. F. ;
Silva, E. Do Couto E. ;
Doughty, T. ;
Esteban, L. ;
Fallows, S. ;
Figueroa-Feliciano, E. ;
Godfrey, G. L. ;
Golwala, S. R. ;
Hall, J. ;
Hansen, S. ;
Harris, H. R. ;
Hertel, S. A. ;
Hines, B. A. ;
Hofer, T. ;
Holmgren, D. ;
Hsu, L. ;
Huber, M. E. ;
Jastram, A. ;
Kamaev, O. ;
Kara, B. ;
Kelsey, M. H. ;
Kenany, S. ;
Kennedy, A. ;
Kiveni, M. ;
Koch, K. .
PHYSICAL REVIEW LETTERS, 2014, 112 (24)
[2]   Results from a Search for Dark Matter in the Complete LUX Exposure [J].
Akerib, D. S. ;
Alsum, S. ;
Araujo, H. M. ;
Bai, X. ;
Bailey, A. J. ;
Balajthy, J. ;
Beltrame, P. ;
Bernard, E. P. ;
Bernstein, A. ;
Biesiadzinski, T. P. ;
Boulton, E. M. ;
Bramante, R. ;
Bras, P. ;
Byram, D. ;
Cahn, S. B. ;
Carmona-Benitez, M. C. ;
Chan, C. ;
Chiller, A. A. ;
Chiller, C. ;
Currie, A. ;
Cutter, J. E. ;
Davison, T. J. R. ;
Dobi, A. ;
Dobson, J. E. Y. ;
Druszkiewicz, E. ;
Edwards, B. N. ;
Faham, C. H. ;
Fiorucci, S. ;
Gaitskell, R. J. ;
Gehman, V. M. ;
Ghag, C. ;
Gibson, K. R. ;
Gilchriese, M. G. D. ;
Hall, C. R. ;
Hanhardt, M. ;
Haselschwardt, S. J. ;
Hertel, S. A. ;
Hogan, D. P. ;
Horn, M. ;
Huang, D. Q. ;
Ignarra, C. M. ;
Ihm, M. ;
Jacobsen, R. G. ;
Ji, W. ;
Kamdin, K. ;
Kazkaz, K. ;
Khaitan, D. ;
Knoche, R. ;
Larsen, N. A. ;
Lee, C. .
PHYSICAL REVIEW LETTERS, 2017, 118 (02)
[3]   Direct detection constraints on superheavy dark matter [J].
Albuquerque, IFM ;
Baudis, L .
PHYSICAL REVIEW LETTERS, 2003, 90 (22) :4-221301
[4]   Results on low mass WIMPs using an upgraded CRESST-II detector [J].
Angloher, G. ;
Bento, A. ;
Bucci, C. ;
Canonica, L. ;
Erb, A. ;
von Feilitzsch, F. ;
Iachellini, N. Ferreiro ;
Gorla, P. ;
Gutlein, A. ;
Hauff, D. ;
Huff, P. ;
Jochum, J. ;
Kiefer, M. ;
Kister, C. ;
Kluck, H. ;
Kraus, H. ;
Lanfranchi, J. -C. ;
Loebell, J. ;
Muenster, A. ;
Petricca, F. ;
Potzel, W. ;
Proebst, F. ;
Reindl, F. ;
Roth, S. ;
Rottler, K. ;
Sailer, C. ;
Schaffner, K. ;
Schieck, J. ;
Schmaler, J. ;
Scholl, S. ;
Schoenert, S. ;
Seidel, W. ;
von Sivers, M. ;
Stodolsky, L. ;
Strandhagen, C. ;
Strauss, R. ;
Tanzke, A. ;
Uffinger, M. ;
Ulrich, A. ;
Usherov, I. ;
Wawoczny, S. ;
Willers, M. ;
Wuestrich, M. ;
Zoeller, A. .
EUROPEAN PHYSICAL JOURNAL C, 2014, 74 (12) :1-6
[5]   The well-tempered neutralino [J].
Arkani-Hamed, N ;
Delgado, A ;
Giudice, GF .
NUCLEAR PHYSICS B, 2006, 741 (1-2) :108-130
[6]  
Baryakhtar M., IN PRESS
[7]   micrOMEGAs4.1: Two dark matter candidates [J].
Belanger, G. ;
Boudjema, F. ;
Pukhov, A. ;
Semenov, A. .
COMPUTER PHYSICS COMMUNICATIONS, 2015, 192 :322-329
[8]   Realistic neutron star constraints on bosonic asymmetric dark matter [J].
Bell, Nicole F. ;
Melatos, Andrew ;
Petraki, Kalliopi .
PHYSICAL REVIEW D, 2013, 87 (12)
[9]   Compact stars as dark matter probes [J].
Bertone, Gianfranco ;
Fairbairn, Malcolm .
PHYSICAL REVIEW D, 2008, 77 (04)
[10]   Dark matter thermalization in neutron stars [J].
Bertoni, Bridget ;
Nelson, Ann E. ;
Reddy, Sanjay .
PHYSICAL REVIEW D, 2013, 88 (12)