On the total choosability of planar graphs and of sparse graphs

被引:15
|
作者
Chang, Gerard Jennhwa [2 ,3 ,4 ]
Hou, Jianfeng [1 ]
Roussel, Nicolas [2 ,4 ]
机构
[1] Fuzhou Univ, Ctr Discrete Math, Fuzhou 350002, Fujian, Peoples R China
[2] Taipei Off, Natl Ctr Theoret Sci, Taipei, Taiwan
[3] Natl Taiwan Univ, Inst Math Sci, Taipei 10617, Taiwan
[4] Natl Taiwan Univ, Dept Math, Taipei 10617, Taiwan
关键词
Combinatorial problems; Total coloring; Total choosability; Planar graphs; Cycle-free; Maximum average degree; LIST TOTAL COLORINGS; TOTAL CHROMATIC NUMBER; MAXIMUM DEGREE; EDGE;
D O I
10.1016/j.ipl.2010.07.007
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In the current paper, we prove the 11-total choosability of planar graphs with maximum degree Delta <= 8, the (Delta + 1)-total choosability of 5-cycle-free planar graphs with maximum degree Delta >= 8, the 5-total choosability of graphs with maximum degree Delta = 4 and maximum average degree mad < 3, and the 4-total choosability of subcubic graphs with maximum average degree mad < 9/4. (C) 2010 Elsevier B.V. All rights reserved.
引用
收藏
页码:849 / 853
页数:5
相关论文
共 50 条
  • [1] k-forested choosability of planar graphs and sparse graphs
    Zhang, Xin
    Liu, Guizhen
    Wu, Jian-Liang
    DISCRETE MATHEMATICS, 2012, 312 (05) : 999 - 1005
  • [2] Adaptable choosability of planar graphs with sparse short cycles
    Guan, Albert
    Zhu, Xuding
    DISCRETE MATHEMATICS, 2009, 309 (20) : 6044 - 6047
  • [3] Choosability of planar graphs
    Institut für Mathematik, TU Ilmenau, 98684 Ilmenau, Germany
    Discrete Math, 1-3 (457-460):
  • [4] Choosability of planar graphs
    Voigt, M
    DISCRETE MATHEMATICS, 1996, 150 (1-3) : 457 - 460
  • [5] Neighbor sum distinguishing total choosability of planar graphs
    Qu, Cunquan
    Wang, Guanghui
    Yan, Guiying
    Yu, Xiaowei
    JOURNAL OF COMBINATORIAL OPTIMIZATION, 2016, 32 (03) : 906 - 916
  • [6] Total choosability of planar graphs with maximum degree 4
    Roussel, Nicolas
    DISCRETE APPLIED MATHEMATICS, 2011, 159 (01) : 87 - 89
  • [7] Neighbor sum distinguishing total choosability of planar graphs
    Cunquan Qu
    Guanghui Wang
    Guiying Yan
    Xiaowei Yu
    Journal of Combinatorial Optimization, 2016, 32 : 906 - 916
  • [8] Linear choosability of sparse graphs
    Cranston, Daniel W.
    Yu, Gexin
    DISCRETE MATHEMATICS, 2011, 311 (17) : 1910 - 1917
  • [9] Choosability in signed planar graphs
    Jin, Ligang
    Kang, Yingli
    Steffen, Eckhard
    EUROPEAN JOURNAL OF COMBINATORICS, 2016, 52 : 234 - 243
  • [10] Minimum choosability of planar graphs
    Huijuan Wang
    Bin Liu
    Ling Gai
    Hongwei Du
    Jianliang Wu
    Journal of Combinatorial Optimization, 2018, 36 : 13 - 22