Gromov-Hausdorff stability of global attractors for 3D Brinkman-Forchheimer equations

被引:2
|
作者
Ai, Chengfei [1 ]
Tan, Zhong [2 ]
机构
[1] Sichuan Univ, Sch Math, Chengdu 610064, Peoples R China
[2] Xiamen Univ, Sch Math Sci, Xiamen, Peoples R China
基金
中国国家自然科学基金;
关键词
Brinkman-Forchheimer equations; global attractors; Gromov-Hausdorff distance; residual continuity; variation of domain; REACTION-DIFFUSION EQUATIONS; CONTINUOUS DEPENDENCE; UNIFORM ATTRACTORS; POROUS-MEDIUM; CONTINUITY; EXISTENCE; DYNAMICS; CONVERGENCE; PERTURBATIONS; FLOW;
D O I
10.1002/mma.8440
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, using the Gromov-Hausdorff distances between two global attractors (which may be in disjoint phase spaces) and two semi-dynamical systems introduced by Lee et al. (2020), we consider the continuous dependence of the global attractors and the stability of the semi-dynamical systems on global attractors induced by the Brinkman-Forchheimer equation under variation of the domain. The results of this paper improve on previous results, which can compare any two systems in different phase spaces without the process of "pull-backing" the perturbed systems to the original domain.
引用
收藏
页码:11117 / 11133
页数:17
相关论文
共 50 条
  • [1] Attractors for the 3D autonomous and nonautonomous Brinkman-Forchheimer equations
    Zhang, Lingrui
    Su, Keqin
    Wen, Shenglan
    BOUNDARY VALUE PROBLEMS, 2016, : 1 - 18
  • [2] Gromov-Hausdorff stability of global attractors for the 3D Navier-Stokes equations with damping
    Tao, Zhengwang
    Yang, Xin-Guang
    Miranville, Alain
    Li, Desheng
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2024, 75 (01):
  • [3] THE EXISTENCE OF UNIFORM ATTRACTORS FOR 3D BRINKMAN-FORCHHEIMER EQUATIONS
    You, Yuncheng
    Zhao, Caidi
    Zhou, Shengfan
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2012, 32 (10) : 3787 - 3800
  • [4] Attractors for the 3D autonomous and nonautonomous Brinkman-Forchheimer equations
    Lingrui Zhang
    Keqin Su
    Shenglan Wen
    Boundary Value Problems, 2016
  • [5] GROMOV-HAUSDORFF STABILITY OF GLOBAL ATTRACTORS FOR THE 3D INCOMPRESSIBLE NAVIER-STOKES-VOIGT EQUATIONS
    Wang, Dongze
    Yang, Xin-guang
    Miranville, Alain
    Yan, Xingjie
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2024, 29 (11): : 4646 - 4670
  • [6] THE STRUCTURE AND STABILITY OF PULLBACK ATTRACTORS FOR 3D BRINKMAN-FORCHHEIMER EQUATION WITH DELAY
    Yang, Xin-Guang
    Li, Lu
    Yan, Xingjie
    Ding, Ling
    ELECTRONIC RESEARCH ARCHIVE, 2020, 28 (04): : 1395 - 1418
  • [7] REGULAR ATTRACTORS OF ASYMPTOTICALLY AUTONOMOUS STOCHASTIC 3D BRINKMAN-FORCHHEIMER EQUATIONS WITH DELAYS
    Zhang, Qiangheng
    Li, Yangrong
    COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2021, 20 (10) : 3499 - 3521
  • [8] Gromov–Hausdorff stability of global attractors for the 3D Navier–Stokes equations with damping
    Zhengwang Tao
    Xin-Guang Yang
    Alain Miranville
    Desheng Li
    Zeitschrift für angewandte Mathematik und Physik, 2024, 75
  • [9] Gromov-Hausdorff stability of global attractors of reaction diffusion equations under perturbations of the domain
    Lee, Jihoon
    Ngocthach Nguyen
    Vu Manh Toi
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2020, 269 (01) : 125 - 147
  • [10] Robustness of regularity for the 3D convective Brinkman-Forchheimer equations
    Hajduk, Karol W.
    Robinson, James C.
    Sadowski, Witold
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2021, 500 (01)