Analysis and Approximation of a Stochastic Growth Model with Extinction

被引:10
作者
Campillo, Fabien [1 ]
Joannides, Marc [1 ,2 ]
Larramendy-Valverde, Irene [2 ]
机构
[1] INRIA INRA, Project Team MODEMIC, UMR MISTEA, Bat 29,2 Pl Viala, F-34060 Montpellier 06, France
[2] Univ Montpellier 2, I3M, Case Courrier 51,Pl Eugene Bataillon, F-34095 Montpellier 5, France
关键词
Logistic model; Markov processes; Diffusion processes; Extinction; Fokker-Planck equation; PDE; CHEMOSTAT; EQUATIONS;
D O I
10.1007/s11009-015-9438-7
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We consider a stochastic growth model for which extinction eventually occurs almost surely. The associated complete Fokker-Planck equation describing the law of the process is established and studied. This equation combines a PDE and an ODE, connected one to each other. We then design a finite differences numerical scheme under a probabilistic viewpoint. The model and its approximation are evaluated through numerical simulations.
引用
收藏
页码:499 / 515
页数:17
相关论文
共 23 条
[1]  
[Anonymous], 1981, A Second Course in Stochastic Processes
[2]  
[Anonymous], 1999, ASYMPTOTIC METHODS F, DOI DOI 10.1007/978-3-662-03857-4
[3]  
[Anonymous], 1838, CORRESP MATH PHYS, DOI 10.1007/bf02309004
[4]   Exact simulation of diffusions [J].
Beskos, A ;
Roberts, GO .
ANNALS OF APPLIED PROBABILITY, 2005, 15 (04) :2422-2444
[5]  
Cacio E, 2011, NUMERICAL METHODS PA
[6]   Stochastic modeling of the chemostat [J].
Campillo, F. ;
Joannides, M. ;
Larramendy-Valverde, I. .
ECOLOGICAL MODELLING, 2011, 222 (15) :2676-2689
[7]   Approximation of the Fokker-Planck equation of the stochastic chemostat [J].
Campillo, Fabien ;
Joannides, Marc ;
Larramendy-Valverde, Irene .
MATHEMATICS AND COMPUTERS IN SIMULATION, 2014, 99 :37-53
[8]  
Durrett R., 1996, STOCHASTIC CALCULUS
[9]  
Ethier S. N., 2005, WILEY SERIES PROBABI