Unbiased solar water splitting of GaN photoanodes with Au nanoparticles supported by plasmon-assisted hot-carrier transfer

被引:18
作者
Abdullah, Ameer [1 ]
Johar, Muhammad Ali [1 ]
Waseem, Aadil [1 ]
Bagal, Indrajit, V [1 ]
Hassan, Mostafa Afifi [1 ]
Lee, June Key [2 ]
Ryu, Sang-Wan [1 ,2 ]
机构
[1] Chonnam Natl Univ, Dept Phys, Gwangju 61186, South Korea
[2] Chonnam Natl Univ, Optoelect Convergence Res Ctr, Gwangju 61186, South Korea
来源
MATERIALS SCIENCE AND ENGINEERING B-ADVANCED FUNCTIONAL SOLID-STATE MATERIALS | 2022年 / 275卷
关键词
Photoelectrochemical; Water splitting; Au NPs; GaN; SPR; Photoanode; GROWTH; MOCVD;
D O I
10.1016/j.mseb.2021.115514
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Photoelectrochemical (PEC) water splitting is a reliable method for converting abundant solar energy into chemical energy. Thus far, the reported efficiencies for the energy conversion of solar to hydrogen (STH) do not meet the criterion for commercial use. A significant improvement in efficiency could be achieved by designing heterostructures, changing the size and shape of gold nanoparticles (Au NPs) and improving the crystal quality of materials used for PEC water splitting. In this study, we synthesized a noble metal/semiconductor composite photoanode by depositing Au NPs on gallium nitride (GaN). Under unbiased conditions, the Au NP/GaN composite photoanode exhibited an 11.4% enhancement in photocurrent density compared to pristine GaN. In addition, the STH conversion efficiency was increased to 1.14% and the incident photon-to-current conversion efficiency reached 67%. These achieved improvements are attributed to efficient light harvesting, effective Au NP/GaN interface for the extraction of hot electrons from Au NPs, and efficient charge-carrier-collection efficiency of the GaN photoelectrode.
引用
收藏
页数:6
相关论文
共 43 条
[1]   Hydrogen generation by solar water splitting using p-InGaN photoelectrochemical cells [J].
Aryal, K. ;
Pantha, B. N. ;
Li, J. ;
Lin, J. Y. ;
Jiang, H. X. .
APPLIED PHYSICS LETTERS, 2010, 96 (05)
[2]  
Bourgeteau T, 2013, ENERG ENVIRON SCI, V6, P2706, DOI [10.1039/C3EE41321G, 10.1039/c3ee41321g]
[3]   Plasmonic enhanced Cu2O-Au-BFO photocathodes for solar hydrogen production [J].
Cheng, Xiaorong ;
Gu, Shoulin ;
Centeno, Anthony ;
Dawson, Graham .
SCIENTIFIC REPORTS, 2019, 9 (1)
[4]   High-quality GaN films grown on chemical vapor-deposited graphene films [J].
Chung, Kunook ;
Park, Suk In ;
Baek, Hyeonjun ;
Chung, Jin-Seok ;
Yi, Gyu-Chul .
NPG ASIA MATERIALS, 2012, 4 :e24-e24
[5]   Comparison study of GaN films grown on porous and planar GaN templates* [J].
Ding, Shan ;
Li, Yue-Wen ;
Xiu, Xiang-Qian ;
Hua, Xue-Mei ;
Xie, Zi-Li ;
Tao, Tao ;
Chen, Peng ;
Liu, Bin ;
Zhang, Rong ;
Zheng, You-Dou .
CHINESE PHYSICS B, 2020, 29 (03)
[6]   Efficiency limits for photoelectrochemical water-splitting [J].
Fountaine, Katherine T. ;
Lewerenz, Hans Joachim ;
Atwater, Harry A. .
Nature Communications, 2016, 7
[7]   ELECTROCHEMICAL PHOTOLYSIS OF WATER AT A SEMICONDUCTOR ELECTRODE [J].
FUJISHIMA, A ;
HONDA, K .
NATURE, 1972, 238 (5358) :37-+
[8]   Deep levels in high resistivity GaN detected by thermally stimulated luminescence and first-principles calculations [J].
Gai, Yanqin ;
Li, Jingbo ;
Hou, Qifeng ;
Wang, Xiaoliang ;
Xiao, Hongling ;
Wang, Cuimei ;
Li, Jinmin .
JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2009, 42 (15)
[9]   Photocorrosion-Limited Maximum Efficiency of Solar Photoelectrochemical Water Splitting [J].
Guo, Ling-Ju ;
Luo, Jun-Wei ;
He, Tao ;
Wei, Su-Huai ;
Li, Shu-Shen .
PHYSICAL REVIEW APPLIED, 2018, 10 (06)
[10]   Single-step fabrication of 3D hierarchical ZnO/ZnS heterojunction branched nanowires by MOCVD for enhanced photoelectrochemical water splitting [J].
Hassan, Mostafa Afifi ;
Waseem, Aadil ;
Johar, Muhammad Ali ;
Bagal, Indrajit, V ;
Ha, Jun-Seok ;
Ryu, Sang-Wan .
JOURNAL OF MATERIALS CHEMISTRY A, 2020, 8 (17) :8300-8312