Three-dimensional stimulation and imaging-based functional optical microscopy of biological cells

被引:45
作者
Quan, Xiangyu [1 ]
Kumar, Manoj [1 ]
Matoba, Osamu [1 ]
Awatsuji, Yasuhiro [2 ]
Hayasaki, Yoshio [3 ]
Hasegawa, Satoshi [3 ]
Wake, Hiroaki [4 ]
机构
[1] Kobe Univ, Grad Sch Syst Informat, Nada Ku, Rokkodai 1-1, Kobe, Hyogo 6578501, Japan
[2] Kyoto Inst Technol, Fac Elect Engn & Elect, Sakyo Ku, Kyoto 6068585, Japan
[3] Utsunomiya Univ, CORE, 7-1-2 Yoto, Utsunomiya, Tochigi 3218585, Japan
[4] Kobe Univ, Grad Sch Med, Div Syst Neurosci, Chuo Ku, Kusunoki Cho 7-5-1, Kobe, Hyogo 6500017, Japan
基金
日本学术振兴会;
关键词
INCOHERENT DIGITAL HOLOGRAPHY; SPATIAL LIGHT-MODULATOR; OPTOGENETICS; SYSTEMS;
D O I
10.1364/OL.43.005447
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
A new type of functional optical microscope system called three-dimensional (3D) stimulation and imaging-based functional optical microscopy (SIFOM) is proposed, to the best of our knowledge. SIFOM can precisely stimulate user-defined targeted biological cells and can simultaneously record the volumetric fluorescence distribution in a single acquisition. Precise and simultaneous stimulation of fluorescent-labeled biological cells is achieved by multiple 3D spots generated by digital holograms displayed on a phase-mode spatial light modulator. Single-shot 3D acquisition of the fluorescence distribution is accomplished by common-path off-axis incoherent digital holographic microscopy in which a diffraction grating with a focusing lens is displayed on another phase-mode spatial light modulator. The effectiveness of the proposed functional microscope system was verified in experiments using fluorescent microbeads and human lung cancer cells located at various defocused positions. The system can be used for manipulating the states of cells in optogenetics. (C) 2018 Optical Society of America
引用
收藏
页码:5447 / 5450
页数:4
相关论文
共 18 条
[1]   Optical dissection of brain circuits with patterned illumination through the phase modulation of light [J].
Bovetti, Serena ;
Fellin, Tommaso .
JOURNAL OF NEUROSCIENCE METHODS, 2015, 241 :66-77
[2]  
Deisseroth K, 2011, NAT METHODS, V8, P26, DOI [10.1038/nmeth.f.324, 10.1038/NMETH.F.324]
[3]   Optical tweezer arrays and optical substrates created with diffractive optics [J].
Dufresne, ER ;
Grier, DG .
REVIEW OF SCIENTIFIC INSTRUMENTS, 1998, 69 (05) :1974-1977
[4]   Molecular and Cellular Approaches for Diversifying and Extending Optogenetics [J].
Gradinaru, Viviana ;
Zhang, Feng ;
Ramakrishnan, Charu ;
Mattis, Joanna ;
Prakash, Rohit ;
Diester, Ilka ;
Goshen, Inbal ;
Thompson, Kimberly R. ;
Deisseroth, Karl .
CELL, 2010, 141 (01) :154-165
[5]   Holographic femtosecond laser processing with multiplexed phase Fresnel lenses [J].
Hasegawa, Satoshi ;
Hayasaki, Yoshio ;
Nishida, Nobuo .
OPTICS LETTERS, 2006, 31 (11) :1705-1707
[6]   Variable holographic femtosecond laser processing by use of a spatial light modulator [J].
Hayasaki, Y ;
Sugimoto, T ;
Takita, A ;
Nishida, N .
APPLIED PHYSICS LETTERS, 2005, 87 (03)
[7]   Nonmechanical optical manipulation of microparticle using spatial light modulator [J].
Hayasaki, Y ;
Itoh, M ;
Yatagai, T ;
Nishida, N .
OPTICAL REVIEW, 1999, 6 (01) :24-27
[8]   Single-shot self-interference incoherent digital holography using off-axis configuration [J].
Hong, Jisoo ;
Kim, Myung K. .
OPTICS LETTERS, 2013, 38 (23) :5196-5199
[9]   Integration of optogenetics with complementary methodologies in systems neuroscience [J].
Kim, Christina K. ;
Adhikari, Avishek ;
Deisseroth, Karl .
NATURE REVIEWS NEUROSCIENCE, 2017, 18 (04) :222-235
[10]   Incoherent digital holograms acquired by interferenceless coded aperture correlation holography system without refractive lenses [J].
Kumar, Manoj ;
Vijayakumar, A. ;
Rosen, Joseph .
SCIENTIFIC REPORTS, 2017, 7