Modality-Driven Classification and Visualization of Ensemble Variance

被引:15
作者
Bensema, Kevin [1 ]
Gosink, Luke [2 ]
Obermaier, Harald [3 ]
Joy, Kenneth I. [4 ]
机构
[1] Univ Calif Davis, Dept Comp Sci, Davis, CA 95616 USA
[2] Pacific Northwest Natl Lab, Richland, WA USA
[3] Univ Calif Davis, Davis, CA 95616 USA
[4] Univ Calif Davis, Inst Data Anal & Visualizat, Davis, CA 95616 USA
关键词
Scientific visualization; ensemble visualization; modality classification; INFORMATION-THEORETIC FRAMEWORK; VISUAL ANALYSIS; UNCERTAINTY; GLYPHS; FLOW;
D O I
10.1109/TVCG.2015.2507569
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
Advances in computational power now enable domain scientists to address conceptual and parametric uncertainty by running simulations multiple times in order to sufficiently sample the uncertain input space. While this approach helps address conceptual and parametric uncertainties, the ensemble datasets produced by this technique present a special challenge to visualization researchers as the ensemble dataset records a distribution of possible values for each location in the domain. Contemporary visualization approaches that rely solely on summary statistics (e.g., mean and variance) cannot convey the detailed information encoded in ensemble distributions that are paramount to ensemble analysis; summary statistics provide no information about modality classification and modality persistence. To address this problem, we propose a novel technique that classifies high-variance locations based on the modality of the distribution of ensemble predictions. Additionally, we develop a set of confidence metrics to inform the end-user of the quality of fit between the distribution at a given location and its assigned class. Finally, for the special application of evaluating the stability of bimodal regions, we develop local and regional metrics.
引用
收藏
页码:2289 / 2299
页数:11
相关论文
共 35 条
[11]   Flow Radar Glyphs-Static Visualization of Unsteady Flow with Uncertainty [J].
Hlawatsch, Marcel ;
Leube, Philipp ;
Nowak, Wolfgang ;
Weiskopf, Daniel .
IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, 2011, 17 (12) :1949-1958
[12]  
Höllt T, 2013, IEEE PAC VIS SYMP, P185, DOI 10.1109/PacificVis.2013.6596144
[13]   Comparative Visual Analysis of Lagrangian Transport in CFD Ensembles [J].
Hummel, Mathias ;
Obermaier, Harald ;
Garth, Christoph ;
Joy, Kenneth I. .
IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, 2013, 19 (12) :2743-2752
[14]   Top scientific visualization research problems [J].
Johnson, C .
IEEE COMPUTER GRAPHICS AND APPLICATIONS, 2004, 24 (04) :13-17
[15]   Visualizing spatially varying distribution data [J].
Kao, D ;
Luo, A ;
Dungan, JL ;
Pang, A .
SIXTH INTERNATIONAL CONFERENCE ON INFORMATION VISUALISATION, PROCEEDINGS, 2002, :219-225
[16]   Hypothesis Generation in Climate Research with Interactive Visual Data Exploration [J].
Kehrer, Johannes ;
Ladstaedter, Florian ;
Muigg, Philipp ;
Doleisch, Helmut ;
Steiner, Andrea ;
Hauser, Helwig .
IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, 2008, 14 (06) :1579-1586
[17]   UFLOW: Visualizing uncertainty in fluid flow [J].
Lodha, SK ;
Pang, A ;
Sheehan, RE ;
Wittenbrink, CM .
VISUALIZATION '96, PROCEEDINGS, 1996, :249-+
[18]   Visualizing spatial multivalue data [J].
Love, AL ;
Pang, A ;
Kao, DL .
IEEE COMPUTER GRAPHICS AND APPLICATIONS, 2005, 25 (03) :69-79
[19]  
Luo A., 2003, Data Visualisation 2003. Joint Eurographics/IEEE TCVG. Symposium on Visualization, P29
[20]  
Maechler M., 2013, diptest: Hartigan's dip test statistic for unimodality - corrected code