A spatial SIS model in heterogeneous environments with vary advective rate

被引:3
作者
An, Xiaowei [1 ]
Song, Xianfa [2 ]
机构
[1] China Peoples Police Univ, Sch Intelligence Policing, Langfang 065000, Hebei, Peoples R China
[2] Tianjin Univ, Sch Math, Dept Math, Tianjin 300072, Peoples R China
关键词
spatial SIS model; vary advective rate; disease-free equilibrium; endemic equilibrium; POSITIVE STEADY-STATE; ASYMPTOTIC PROFILES; EPIDEMIC MODEL; REPRODUCTION NUMBERS; DIFFUSION; DYNAMICS; PERSISTENCE; BIFURCATION; RISK;
D O I
10.3934/mbe.2021276
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
We study a spatial susceptible-infected-susceptible(SIS) model in heterogeneous environments with vary advective rate. We establish the asymptotic stability of the unique disease-free equilibrium(DFE) when R-0 < 1, and the existence of the endemic equilibrium when R-0 > 1. Here R-0 is the basic reproduction number. We also discuss the effect of diffusion on the stability of the DFE.
引用
收藏
页码:5449 / 5477
页数:29
相关论文
共 28 条
  • [1] Asymptotic profiles of the steady states for an sis epidemic patch model
    Allen, L. J. S.
    Bolker, B. M.
    Lou, Y.
    Nevai, A. L.
    [J]. SIAM JOURNAL ON APPLIED MATHEMATICS, 2007, 67 (05) : 1283 - 1309
  • [2] Allen LJS, 2008, DISCRETE CONT DYN-A, V21, P1
  • [3] [Anonymous], 2017, CMS BOOKS MATH OUVRA
  • [4] Crandall M.G., 1971, J FUNCT ANAL, V8, P321, DOI DOI 10.1016/0022-1236(71)90015-2
  • [5] Dynamics and asymptotic profiles of steady states of an epidemic model in advective environments
    Cui, Renhao
    Lam, King-Yeung
    Lou, Yuan
    [J]. JOURNAL OF DIFFERENTIAL EQUATIONS, 2017, 263 (04) : 2343 - 2373
  • [6] A spatial SIS model in advective heterogeneous environments
    Cui, Renhao
    Lou, Yuan
    [J]. JOURNAL OF DIFFERENTIAL EQUATIONS, 2016, 261 (06) : 3305 - 3343
  • [7] DIEKMANN O, 1990, J MATH BIOL, V28, P365
  • [8] Allee effect and bistability in a spatially heterogeneous predator-prey model
    Du, Yihong
    Shi, Junping
    [J]. TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2007, 359 (09) : 4557 - 4593
  • [9] A SIS reaction-diffusion-advection model in a low-risk and high-risk domain
    Ge, Jing
    Kim, Kwang Ik
    Lin, Zhigui
    Zhu, Huaiping
    [J]. JOURNAL OF DIFFERENTIAL EQUATIONS, 2015, 259 (10) : 5486 - 5509
  • [10] Gilbarg D., 2015, ELLIPTIC PARTIAL DIF