Chiral and counter-propagating Majorana fermions in a p-wave superconductor

被引:6
作者
Hu, Haiping [1 ,2 ]
Satija, Indubala I. [1 ]
Zhao, Erhai [1 ,3 ]
机构
[1] George Mason Univ, Dept Phys & Astron, Fairfax, VA 22030 USA
[2] Univ Pittsburgh, Dept Phys & Astron, Pittsburgh, PA 15260 USA
[3] George Mason Univ, Quantum Mat Ctr, Fairfax, VA 22030 USA
关键词
topological superconductor; Majorana edge mode; braiding; QUANTIZED HALL CONDUCTANCE; NON-ABELIAN STATISTICS; QUANTUM; STATES;
D O I
10.1088/1367-2630/ab5cad
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Chiral and helical Majorana fermions are two archetypal edge excitations in two-dimensional topological superconductors. They emerge from systems of different Altland-Zirnbauer symmetries and characterized by Z and Z(2) topological invariants respectively. It seems improbable to tune a pair of co-propagating chiral edge modes to counter-propagate in a single system without symmetry breaking. Here, we explore the peculiar behaviors of Majorana edge modes in topological superconductors with an additional 'mirror' symmetry which changes the bulk topological invariant to Z circle plus Z type. A theoretical toy model describing the proximity structure of a Chern insulator and a p(x)-wave superconductor is proposed and solved analytically to illustrate a direct transition between two topologically nontrivial phases. The weak pairing phase has two chiral Majorana edge modes, while the strong pairing phase is characterized by mirror-graded Chern number and hosts a pair of counter-propagating Majorana fermions protected by the mirror symmetry. The edge theory is worked out in detail, and implications to braiding of Majorana fermions are discussed.
引用
收藏
页数:7
相关论文
共 54 条
[11]   Odd-Parity Topological Superconductors: Theory and Application to CuxBi2Se3 [J].
Fu, Liang ;
Berg, Erez .
PHYSICAL REVIEW LETTERS, 2010, 105 (09)
[12]   Chern numbers in discretized Brillouin zone: Efficient method of computing (spin) Hall conductances [J].
Fukui, T ;
Hatsugai, Y ;
Suzuki, H .
JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 2005, 74 (06) :1674-1677
[13]   Colloquium: Topological insulators [J].
Hasan, M. Z. ;
Kane, C. L. .
REVIEWS OF MODERN PHYSICS, 2010, 82 (04) :3045-3067
[14]   Topological analysis of the quantum Hall effect in graphene: Dirac-Fermi transition across van Hove singularities and edge versus bulk quantum numbers [J].
Hatsugai, Yasuhiro ;
Fukui, Takahiro ;
Aoki, Hideo .
PHYSICAL REVIEW B, 2006, 74 (20)
[15]   RETRACTED: Chiral Majorana fermion modes in a quantum anomalous Hall insulator-superconductor structure (Publication with Expression of Concern. See vol. 374, pg. 1454, 2021) (Retracted Article) [J].
He, Qing Lin ;
Pan, Lei ;
Stern, Alexander L. ;
Burks, Edward C. ;
Che, Xiaoyu ;
Yin, Gen ;
Wang, Jing ;
Lian, Biao ;
Zhou, Quan ;
Choi, Eun Sang ;
Murata, Koichi ;
Kou, Xufeng ;
Chen, Zhijie ;
Nie, Tianxiao ;
Shao, Qiming ;
Fan, Yabin ;
Zhang, Shou-Cheng ;
Liu, Kai ;
Xia, Jing ;
Wang, Kang L. .
SCIENCE, 2017, 357 (6348) :294-299
[16]  
Huang LH, 2016, NAT PHYS, V12, P540, DOI [10.1038/NPHYS3672, 10.1038/nphys3672]
[17]   Non-abelian statistics of half-quantum vortices in p-wave superconductors [J].
Ivanov, DA .
PHYSICAL REVIEW LETTERS, 2001, 86 (02) :268-271
[18]   Z2 topological order and the quantum spin Hall effect -: art. no. 146802 [J].
Kane, CL ;
Mele, EJ .
PHYSICAL REVIEW LETTERS, 2005, 95 (14)
[19]   Scalable designs for quasiparticle-poisoning-protected topological quantum computation with Majorana zero modes [J].
Karzig, Torsten ;
Knapp, Christina ;
Lutchyn, Roman M. ;
Bonderson, Parsa ;
Hastings, Matthew B. ;
Nayak, Chetan ;
Alicea, Jason ;
Flensberg, Karsten ;
Plugge, Stephan ;
Oreg, Yuval ;
Marcus, Charles M. ;
Freedman, Michael H. .
PHYSICAL REVIEW B, 2017, 95 (23)
[20]  
Kitaev A, 2009, AIP CONF PROC, V1134, P22, DOI 10.1063/1.3149495