Shape from defocus via diffusion

被引:126
作者
Favaro, Paolo [1 ]
Soatto, Stefano [2 ]
Burger, Martin [3 ]
Osher, Stanley J. [4 ]
机构
[1] Heriot Watt Univ, Sch Engn & Phys Sci, Edinburgh EH14 4AS, Midlothian, Scotland
[2] Univ Calif Los Angeles, Dept Comp Sci, Los Angeles, CA 90095 USA
[3] Univ Munster, Inst Computat & App Math, D-48149 Munster, Germany
[4] Univ Calif Los Angeles, Dept Appl Math, Los Angeles, CA 90095 USA
基金
美国国家科学基金会; 英国工程与自然科学研究理事会;
关键词
shape; reconstruction; depth cues; gradient methods; iterative methods; partial differential equations; inverse problems; sharpening; and deblurring;
D O I
10.1109/TPAMI.2007.1175
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Defocus can be modeled as a diffusion process and represented mathematically using the heat equation, where image blur corresponds to the diffusion of heat. This analogy can be extended to nonplanar scenes by allowing a space-varying diffusion coefficient. The inverse problem of reconstructing 3D structure from blurred images corresponds to an "inverse diffusion" that is notoriously ill posed. We show how to bypass this problem by using the notion of relative blur. Given two images, within each neighborhood, the amount of diffusion necessary to transform the sharper image into the blurrier one depends on the depth of the scene. This can be used to devise a global algorithm to estimate the depth profile of the scene without recovering the deblurred image using only forward diffusion.
引用
收藏
页码:518 / 531
页数:14
相关论文
共 49 条
  • [1] AMANN H, 1995, LINEAR QUASILINEAR, V1
  • [2] Ambrosio L., 2005, LEC MATH
  • [3] Edge and depth from focus
    Asada, N
    Fujiwara, H
    Matsuyama, T
    [J]. INTERNATIONAL JOURNAL OF COMPUTER VISION, 1998, 26 (02) : 153 - 163
  • [4] Aubert G., 2001, Applied Mathematical Sciences
  • [5] Bertero M., 1998, Introduction to Inverse Problems in Imaging (Advanced Lectures in Mathematics)
  • [6] Robust anisotropic diffusion
    Black, MJ
    Sapiro, G
    Marimont, DH
    Heeger, D
    [J]. IEEE TRANSACTIONS ON IMAGE PROCESSING, 1998, 7 (03) : 421 - 432
  • [7] Chaudhuri S., 1999, Depth from Defocus: A Real Aperture Imaging Approach
  • [8] AN INVESTIGATION OF METHODS FOR DETERMINING DEPTH FROM FOCUS
    ENS, J
    LAWRENCE, P
    [J]. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 1993, 15 (02) : 97 - 108
  • [9] Favaro P, 2003, PROC CVPR IEEE, P179
  • [10] Observing shape from defocused images
    Favaro, P
    Mennucci, A
    Soatto, S
    [J]. INTERNATIONAL JOURNAL OF COMPUTER VISION, 2003, 52 (01) : 25 - 43