Anisotropic mean curvature flow of Lipschitz graphs and convergence to self-similar solutions*

被引:4
作者
Cesaroni, A. [1 ]
Kroener, H. [2 ]
Novaga, M. [3 ]
机构
[1] Univ Padua, Dept Stat Sci, Via Cesare Battisti 141, I-35121 Padua, Italy
[2] Univ Duisburg Essen, Fak Math, Thea Leymann Str 9, D-45127 Essen, Germany
[3] Univ Pisa, Dept Math, Largo Bruno Pontecorvo 5, I-56127 Pisa, Italy
关键词
Anisotropic mean curvature flow; self-similar solutions; long time behavior; UNIQUENESS; EXISTENCE;
D O I
10.1051/cocv/2021096
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We consider the anisotropic mean curvature flow of entire Lipschitz graphs. We prove existence and uniqueness of expanding self-similar solutions which are asymptotic to a prescribed cone, and we characterize the long time behavior of solutions, after suitable rescaling, when the initial datum is a sublinear perturbation of a cone. In the case of regular anisotropies, we prove the stability of self-similar solutions asymptotic to strictly mean convex cones, with respect to perturbations vanishing at infinity. We also show the stability of hyperplanes, with a proof which is novel also for the isotropic mean curvature flow.
引用
收藏
页数:17
相关论文
共 21 条
  • [1] Andrews B, 2001, INDIANA U MATH J, V50, P783
  • [2] A new approach to front propagation problems: Theory and applications
    Barles, G
    Souganidis, PE
    [J]. ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 1998, 141 (03) : 237 - 296
  • [3] Crystalline mean curvature flow of convex sets
    Bellettini, G
    Caselles, V
    Chambolle, A
    Novaga, M
    [J]. ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2006, 179 (01) : 109 - 152
  • [4] Brezis H., 1973, N HOLLAND MATH STUD, V5
  • [5] Cesaroni A., 2021, ARXIV210311346
  • [6] EXISTENCE AND UNIQUENESS FOR ANISOTROPIC AND CRYSTALLINE MEAN CURVATURE FLOWS
    Chambolle, Antonin
    Morini, Massimiliano
    Novaga, Matteo
    Ponsiglione, Marcello
    [J]. JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY, 2019, 32 (03) : 779 - 824
  • [7] GENERALIZED CRYSTALLINE EVOLUTIONS AS LIMITS OF FLOWS WITH SMOOTH ANISOTROPIES
    Chambolle, Antonin
    Morini, Massimiliano
    Novaga, Matteo
    Ponsiglione, Marcello
    [J]. ANALYSIS & PDE, 2019, 12 (03): : 789 - 813
  • [8] Existence and Uniqueness for a Crystalline Mean Curvature Flow
    Chambolle, Antonin
    Morini, Massimiliano
    Ponsiglione, Marcello
    [J]. COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2017, 70 (06) : 1084 - 1114
  • [9] Stability of mean convex cones under mean curvature flow
    Clutterbuck, J.
    Schnuerer, O. C.
    [J]. MATHEMATISCHE ZEITSCHRIFT, 2011, 267 (3-4) : 535 - 547
  • [10] MEAN-CURVATURE EVOLUTION OF ENTIRE GRAPHS
    ECKER, K
    HUISKEN, G
    [J]. ANNALS OF MATHEMATICS, 1989, 130 (03) : 453 - 471