On the generalized Bregman projection operator in reflexive Banach spaces

被引:4
作者
Eskandani, G. Zamani [1 ]
Azarmi, S. [1 ]
Raeisi, M. [1 ]
机构
[1] Univ Tabriz, Fac Math Sci, Dept Pure Math, Tabriz, Iran
关键词
Bregman distance; generalized Bregman f-projection; Bregman relatively nonexpansive mappings; STRONG-CONVERGENCE THEOREMS; NONEXPANSIVE-MAPPINGS; TOTAL CONVEXITY; ALGORITHM; RESOLVENTS; POINTS;
D O I
10.1007/s11784-019-0749-0
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we study the generalized Bregman f-projection operator in reflexive Banach spaces. After providing some properties of the generalized Bregman f-projection operator, we propose an iterative algorithm to finding a common fixed point of a finite family of Bregman relatively nonexpansive mappings in reflexive Banach spaces using the generalized Bregman f-projection operator. An application of our algorithm to finding a common zero of a finite family of maximal monotone operators will also be exhibited.
引用
收藏
页数:21
相关论文
共 47 条
[1]  
Alber Y.I., 1996, LECT NOTES PURE APPL, V178, P15
[2]  
Alber Y.I., 1993, Functional-Differential Equations, Funct. Differential Equations Israel Sem., V1, P1
[3]  
Ambrosetti A., 1993, PRIMER NONLINEAR ANA
[4]  
[Anonymous], J MATH ANAL APPL
[5]  
[Anonymous], 2001, J. Appl. Anal., DOI DOI 10.1515/JAA.2001.151
[6]  
[Anonymous], 1977, Houston J. Math.
[7]  
Barbu V., 1978, CONVEXITY OPTIMIZATI
[8]   Bregman monotone optimization algorithms [J].
Bauschke, HH ;
Borwein, JM ;
Combettes, PL .
SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2003, 42 (02) :596-636
[9]   Essential smoothness, essential strict convexity, and Legendre functions in Banach spaces [J].
Bauschke, HH ;
Borwein, JM ;
Combettes, PL .
COMMUNICATIONS IN CONTEMPORARY MATHEMATICS, 2001, 3 (04) :615-647
[10]  
Bonnans J. F., 2013, Perturbation analysis of optimization problems.