Global sensitivity analysis with a hierarchical sparse metamodeling method

被引:12
|
作者
Zhao, Wei [1 ,2 ,3 ]
Bu, Lingze [1 ]
机构
[1] Harbin Inst Technol, Sch Civil Engn, Harbin 150090, Heilongjiang, Peoples R China
[2] Harbin Inst Technol, Minist Educ, Key Lab Struct Dynam Behav & Control, Harbin 150090, Heilongjiang, Peoples R China
[3] Harbin Inst Technol, Minist Ind & Informat Technol, Key Lab Smart Prevent & Mitigat Civil Engn Disast, Harbin 150090, Heilongjiang, Peoples R China
基金
中国博士后科学基金; 中国国家自然科学基金;
关键词
Global sensitivity analysis; Polynomial chaos expansion; Curse of dimensionality; Partial least squares regression; Penalized matrix decomposition; POLYNOMIAL CHAOS EXPANSIONS; STRUCTURAL RELIABILITY; REGRESSION; APPROXIMATION; EQUATIONS; INDEXES; MODELS;
D O I
10.1016/j.ymssp.2018.06.044
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
To meet the numerical challenges of polynomial chaos expansion for global sensitivity analysis in high stochastic dimensions, this paper proposes a new metamodeling method named hierarchical sparse partial least squares regression-polynomial chaos expansion (HSPLSR-PCE). Firstly, to avoid large data sets, the polynomials are divided into groups according to their nonlinearity degrees and interaction intensities (number of inputs). Then, to circumvent the multicollinearity, latent variables are extracted from each group by using partial least squares regression. Next, the optimal latent variables are automatically selected with the penalized matrix decomposition scheme. Finally, the Sobol sensitivity indices are straightforwardly derived from the expansion coefficients. Results of three examples demonstrate that the proposed method is superior to the traditional counterpart in terms of computational efficiency and accuracy. (C) 2018 Elsevier Ltd. All rights reserved.
引用
收藏
页码:769 / 781
页数:13
相关论文
共 50 条
  • [21] Global sensitivity analysis in an ocean general circulation model: a sparse spectral projection approach
    Alexanderian, Alen
    Winokur, Justin
    Sraj, Ihab
    Srinivasan, Ashwanth
    Iskandarani, Mohamed
    Thacker, William C.
    Knio, Omar M.
    COMPUTATIONAL GEOSCIENCES, 2012, 16 (03) : 757 - 778
  • [22] GLOBAL SENSITIVITY ANALYSIS: AN EFFICIENT NUMERICAL METHOD FOR APPROXIMATING THE TOTAL SENSITIVITY INDEX
    Lamboni, Matieyendou
    INTERNATIONAL JOURNAL FOR UNCERTAINTY QUANTIFICATION, 2016, 6 (01) : 1 - 17
  • [23] Global Sparse Analysis Framework
    Oh, Hakjoo
    Heo, Kihong
    Lee, Wonchan
    Lee, Woosuk
    Park, Daejun
    Kang, Jeehoon
    Yi, Kwangkeun
    ACM TRANSACTIONS ON PROGRAMMING LANGUAGES AND SYSTEMS, 2014, 36 (03):
  • [24] SENSITIVITY ANALYSIS FOR SIMULATION-BASED OPTIMIZATION VIA METAMODELING TECHNIQUES
    Liu, Haitao
    Ma, Ying
    Xu, Shengli
    Wang, Xiaofang
    Song, Yang
    ASME TURBO EXPO: TURBINE TECHNICAL CONFERENCE AND EXPOSITION, 2015, VOL 2C, 2015,
  • [25] SENSITIVITY ANALYSIS OF EXPENSIVE BLACK-BOX SYSTEMS USING METAMODELING
    Van Steenkiste, Tom
    van der Herten, Joachim
    Couckuyt, Ivo
    Dhaene, Tom
    2016 WINTER SIMULATION CONFERENCE (WSC), 2016, : 578 - 589
  • [26] A Hierarchical Statistical Sensitivity Analysis Method for Multilevel Systems With Shared Variables
    Liu, Yu
    Yin, Xiaolei
    Arendt, Paul
    Chen, Wei
    Huang, Hong-Zhong
    JOURNAL OF MECHANICAL DESIGN, 2010, 132 (03) : 0310061 - 03100611
  • [27] Sampling, Metamodeling, and Sensitivity Analysis of Numerical Simulators with Functional Stochastic Inputs
    Nanty, Simon
    Helbert, Celine
    Marrel, Amandine
    Perot, Nadia
    Prieur, Clementine
    SIAM-ASA JOURNAL ON UNCERTAINTY QUANTIFICATION, 2016, 4 (01): : 636 - 659
  • [28] A hierarchical statistical sensitivity analysis method for complex engineering systems design
    Yin, Xiaolei
    Chen, Wei
    JOURNAL OF MECHANICAL DESIGN, 2008, 130 (07)
  • [29] Hierarchical Gaussian Process Models for Improved Metamodeling
    Knudde, Nicolas
    Dutordoir, Vincent
    Van der Herten, Joachim
    Couckuyt, Ivo
    Dhaene, Tom
    ACM TRANSACTIONS ON MODELING AND COMPUTER SIMULATION, 2020, 30 (04):
  • [30] Hierarchical metamodeling: cross validation and predictive uncertainty
    Colosimo, Bianca M.
    Pagani, Luca
    Strano, Matteo
    MATERIAL FORMING ESAFORM 2014, 2014, 611-612 : 1519 - 1527