Application of several artificial intelligence models and ARIMAX model for forecasting drought using the Standardized Precipitation Index

被引:92
作者
Jalalkamali, A. [1 ]
Moradi, M. [2 ]
Moradi, N. [2 ,3 ]
机构
[1] Islamic Azad Univ, Dept Water Engn, Kerman Branch, Kerman, Iran
[2] Islamic Azad Univ Kerman, Kerman, Iran
[3] Islamic Azad Univ Bam, Kerman, Iran
关键词
Drought; Forecasting; SPI; ANFIS; ANN; ARIMAX; SVM; Yazd; ANFIS;
D O I
10.1007/s13762-014-0717-6
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Drought is among the most important natural disasters influencing different aspects of human life. In recent decades, intelligent techniques have shown to be highly capable of modeling and forecasting nonlinear and dynamic time series. Hence, the present study aimed to forecast drought using and comparing the multilayer perceptron artificial neural network (MLP ANN), adaptive neuro-fuzzy inference systems (ANFIS), support vector machine (SVM) model, and the autoregressive integrated moving average (ARIMAX) multivariate time series. To this end, the precipitation data obtained from the Yazd synoptic station for a 51-year statistic period were used. Moreover, the humidity levels for short-term (3 and 6 months) and long-term (9, 12, 18, and 24 months) periods were calculated using the Standardized Precipitation Index (SPI). Next, based on the results of calculations, the 1961-2002 period was selected as the control group and the 2003-2012 period was selected as the experimental group. In order to forecast the SPI for the t + 1 period, values of SPI, precipitation, and temperature of previous eras were used. Results indicated that in a 9-months period (as the timescale), the ARIMAX model gives SPI values and forecast drought with more precision than the SVM, ANFIS, and MLP models.
引用
收藏
页码:1201 / 1210
页数:10
相关论文
共 50 条
  • [21] Diagnosis of Drought in Bangladesh using Standardized Precipitation Index
    Rafiuddin, M.
    Dash, Badal Kumar
    Khanam, Fahima
    Islam, M. N.
    ENVIRONMENT SCIENCE AND ENGINEERING, 2011, 8 : 184 - 187
  • [22] Analysis of Drought in the Maharashtra by Using the Standardized Precipitation Index
    Dakhore, K. K.
    Karunakar, A.
    Jadhav, J. D.
    Kadam, Y. E.
    Waskar, D. P.
    Kumar, P. Vijaya
    JOURNAL OF AGROMETEOROLOGY, 2020, 22 : 43 - 50
  • [23] Drought Analysis in Europe and in the Mediterranean Basin Using the Standardized Precipitation Index
    Caloiero, Tommaso
    Veltri, Simone
    Caloiero, Paola
    Frustaci, Francesco
    WATER, 2018, 10 (08)
  • [24] Drought monitoring in Croatia using the standardized precipitation-evapotranspiration index
    Loncar-Petrinjak, Ivan
    Pasaric, Zoran
    Kalin, Ksenija Cindric
    GEOFIZIKA, 2024, 41 (01) : 1 - 23
  • [25] Application of artificial intelligence hybrid models for meteorological drought prediction
    Azimi, Seyed Mohammad Ehsan
    Sadatinejad, Seyed Javad
    Malekian, Arash
    Jahangir, Mohammad Hossein
    NATURAL HAZARDS, 2023, 116 (02) : 2565 - 2589
  • [26] ARTIFICIAL NEURAL NETWORK MODELS FOR PREDICTION OF STANDARDIZED PRECIPITATION INDEX IN CENTRAL MEXICO
    Magallanes-Quintanar, Rafael
    Galvan-Tejada, Carlos Eric
    Galvan-Tejada, Jorge Issac
    Mendez-Gallegos, Santiago de Jesus
    Blanco-Macias, Fidel
    Valdez-Cepeda, Ricardo David
    AGROCIENCIA, 2023, 57 (01) : 177 - 207
  • [27] Application of Artificial Neural Networks in Forecasting a Standardized Precipitation Evapotranspiration Index for the Upper Blue Nile Basin
    Mulualem, Getachew Mehabie
    Liou, Yuei-An
    WATER, 2020, 12 (03)
  • [28] Comparative study of two drought description models in Central-Africa: the revisited effective drought index and the standardized precipitation index
    G. M. Guenang
    A. J. Komkoua Mbienda
    L. A. Djiotang Tchotchou
    A. R. Gamgo Fotse
    C. S. Fowo Fotso
    D. A. Vondou
    Modeling Earth Systems and Environment, 2023, 9 : 1775 - 1792
  • [29] Comparative study of two drought description models in Central-Africa: the revisited effective drought index and the standardized precipitation index
    Guenang, G. M.
    Mbienda, A. J. Komkoua
    Tchotchou, L. A. Djiotang
    Fotse, A. R. Gamgo
    Fotso, C. S. Fowo
    Vondou, D. A.
    MODELING EARTH SYSTEMS AND ENVIRONMENT, 2023, 9 (02) : 1775 - 1792
  • [30] Drought Monitoring Using the Multivariate Standardized Precipitation Index (MSPI)
    Bazrafshan, Javad
    Hejabi, Somayeh
    Rahimi, Jaber
    WATER RESOURCES MANAGEMENT, 2014, 28 (04) : 1045 - 1060